RSOS quantum chains associated with off-critical minimal models and Zn parafermions

被引:10
|
作者
Bianchini, Davide [1 ]
Ercolessi, Elisa [2 ,3 ]
Pearce, Paul A. [4 ]
Ravanini, Francesco [2 ,3 ]
机构
[1] City Univ London, Dept Math, London EC1V 0HB, England
[2] Univ Bologna, Dept Phys & Astron, I-40126 Bologna, Italy
[3] INFN Sez Bologna, I-40126 Bologna, Italy
[4] Univ Melbourne, Dept Math & Stat, Parkville, Vic 3010, Australia
关键词
conformal field theory; integrable spin chains (vertex models); solvable lattice models; INFINITE CONFORMAL SYMMETRY; CORNER TRANSFER-MATRICES; 8-VERTEX SOS MODEL; ENTANGLEMENT; ENTROPY;
D O I
10.1088/1742-5468/2015/03/P03010
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We consider the phi(1,3) off-critical perturbation M(m, m'; t) of the general non-unitary minimal models where 2 <= m <= m' and m, m' are coprime and t measures the departure from criticality corresponding to the phi(1,3) integrable perturbation. We view these models as the continuum scaling limit in the ferromagnetic Regime III of the Forrester-Baxter Restricted Solid-On-Solid (RSOS) models on the square lattice. We also consider the RSOS models in the antiferromagnetic Regime II related in the continuum scaling limit to Z(n) parfermions with n = m' - 2. Using an elliptic Yang-Baxter algebra of planar tiles encoding the allowed face configurations, we obtain the Hamiltonians of the associated quantum chains defined as the logarithmic derivative of the transfer matrices with periodic boundary conditions. The transfer matrices and Hamiltonians act on a vector space of paths on the A(m') - 1 Dynkin diagram whose dimension is counted by generalized Fibonacci numbers.
引用
收藏
页数:19
相关论文
共 28 条
  • [1] Off-critical logarithmic minimal models
    Pearce, Paul A.
    Seaton, Katherine A.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2012,
  • [2] Off-critical parafermions and the winding angle distribution of the O(n) model
    Price, Andrew Elvey
    de Gier, Jan
    Guttmann, Anthony J.
    Lee, Alexander
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (27)
  • [3] Critical and off-critical singularaties in disordered quantum magnets
    Rieger, H
    ANNALEN DER PHYSIK, 1998, 7 (5-6) : 564 - 574
  • [4] Critical and off-critical singularities in disordered quantum magnets
    Rieger, H.
    Annalen der Physik (Leipzig), 1998, 7 (5-6): : 564 - 574
  • [5] Form factors in off-critical superconformal models
    Mussardo, G
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1999, 13 (24-25): : 2961 - 2972
  • [6] OFF-CRITICAL LATTICE ANALOGS OF N=2 SUPERSYMMETRIC QUANTUM INTEGRABLE MODELS
    NEMESCHANSKY, D
    WARNER, NP
    NUCLEAR PHYSICS B, 1994, 413 (03) : 629 - 652
  • [7] OFF-CRITICAL LATTICE MODELS AND MASSIVE SLEs
    Makarov, Nikolai
    Smirnov, Stanislav
    XVITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2010, : 362 - +
  • [8] THE OFF-CRITICAL BEHAVIOR OF THE MULTICRITICAL ISING-MODELS
    MARTINS, MJ
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (31): : 7753 - 7773
  • [9] Junction of three off-critical quantum Ising chains and two-channel Kondo effect in a superconductor
    Domenico Giuliano
    Gabriele Campagnano
    Arturo Tagliacozzo
    The European Physical Journal B, 2016, 89
  • [10] Junction of three off-critical quantum Ising chains and two-channel Kondo effect in a superconductor
    Giuliano, Domenico
    Campagnano, Gabriele
    Tagliacozzo, Arturo
    EUROPEAN PHYSICAL JOURNAL B, 2016, 89 (11):