Well performance prediction based on Long Short-Term Memory (LSTM) neural network

被引:79
|
作者
Huang, Ruijie [1 ]
Wei, Chenji [1 ]
Wang, Baohua [1 ]
Yang, Jian [1 ]
Xu, Xin [2 ,3 ]
Wu, Suwei [1 ]
Huang, Suqi [1 ]
机构
[1] PetroChina, Res Inst Petr Explorat & Dev, Beijing 100083, Peoples R China
[2] KTH Royal Inst Technol, Sch Elect Engn & Comp Sci, SE-10044 Stockholm, Sweden
[3] Bytedance Inc, Hangzhou 310000, Peoples R China
基金
中国国家自然科学基金;
关键词
Performance prediction; Long short-term memory; Neural network; Time series data; Carbonate reservoir;
D O I
10.1016/j.petrol.2021.109686
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Fast and accurate prediction of well performance continues to play an increasingly important role in development adjustment and optimization. It is now possible to predict performance more accurately using neural networks thanks to the advancement of artificial intelligence. In this study, A Long Short-Term Memory (LSTM) neural network model which considered gas injection effect was established to forecast the production performance of a carbonate reservoir in the Middle East. Over 12 years of surveillance data from 17 producers and 11 injectors were selected as the dataset. A correlation analysis was performed to determine the input and output variables of the model before establishing the model. Using historical data from the first 4000 days, the model is trained and validated before it is used to predict the performance of the next 500 days. After that, the calculation results of this model and traditional reservoir numerical simulation (RNS) were compared under the same conditions. The results show that the average error of the LSTM method is 43.75% lower than that of traditional RNS. Moreover, the total CPU time and comprehensive computing power consumption of LSTM method only account for 10.43% and 36.46% of RNS's, respectively. Thus, it is clear that the LSTM approach has a significant advantage when it comes to calculating. In the end, we categorized all 17 producers into three groups based on GOR predictions for the next 500 days, and proposed optimization and adjustment techniques for each type. This study provides a new direction for the application of artificial intelligence in oil and gas development.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Automated Cloud Based Long Short-Term Memory Neural Network Based SWE Prediction
    Meyal, Alireza Yekta
    Versteeg, Roelof
    Alper, Erek
    Johnson, Doug
    Rodzianko, Anastasia
    Franklin, Maya
    Wainwright, Haruko
    [J]. FRONTIERS IN WATER, 2020, 2
  • [22] Long short-term memory (LSTM) recurrent neural network for muscle activity detection
    Ghislieri, Marco
    Cerone, Giacinto Luigi
    Knaflitz, Marco
    Agostini, Valentina
    [J]. JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2021, 18 (01)
  • [23] Long short-term memory (LSTM) recurrent neural network for muscle activity detection
    Marco Ghislieri
    Giacinto Luigi Cerone
    Marco Knaflitz
    Valentina Agostini
    [J]. Journal of NeuroEngineering and Rehabilitation, 18
  • [24] Performance prediction of fuel cells using long short-term memory recurrent neural network
    Zheng, Lu
    Hou, Yongping
    Zhang, Tao
    Pan, Xiangmin
    [J]. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (06) : 9141 - 9161
  • [25] Predicting the performance of green stormwater infrastructure using multivariate long short-term memory (LSTM) neural network
    Al Mehedi, Md Abdullah
    Amur, Achira
    Metcalf, Jessica
    McGauley, Matthew
    Smith, Virginia
    Wadzuk, Bridget
    [J]. JOURNAL OF HYDROLOGY, 2023, 625
  • [26] Comparing Long Short-Term Memory (LSTM) and bidirectional LSTM deep neural networks for power consumption prediction
    da Silva, Davi Guimaraes
    Meneses, Anderson Alvarenga de Moura
    [J]. ENERGY REPORTS, 2023, 10 : 3315 - 3334
  • [27] Wind Power Prediction based on Recurrent Neural Network with Long Short-Term Memory Units
    Dong, Danting
    Sheng, Zhihao
    Yang, Tiancheng
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY AND POWER ENGINEERING (REPE 2018), 2018, : 34 - 38
  • [28] Efficient Prediction for Vortex Induced Vibration Based on Long Short-term Memory Neural Network
    Xiao, Yucheng
    Li, Liang
    Xu, Mingze
    [J]. Ship Building of China, 2023, 64 (05) : 130 - 145
  • [29] Sea surface temperature prediction model based on long and short-term memory neural network
    Li, Xiaojing
    [J]. 3RD INTERNATIONAL FORUM ON GEOSCIENCE AND GEODESY, 2021, 658
  • [30] Deformation prediction of rock cut slope based on long short-term memory neural network
    Wang, Sichang
    Lyu, Tian-le
    Luo, Naqing
    Chang, Pengcheng
    [J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (03) : 795 - 805