Martingale solutions and Markov selection of stochastic 3D Navier-Stokes equations with jump

被引:23
|
作者
Dong, Zhao [2 ]
Zhai, Jianliang [1 ,2 ]
机构
[1] Peking Univ, LMAM, Sch Math Sci, Beijing 100871, Peoples R China
[2] Acad Sinica, Inst Appl Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China
关键词
3D Navier-Stokes equation; Martingale solutions; Markov selection; Levy processes;
D O I
10.1016/j.jde.2011.01.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the existence of martingale solutions of stochastic 3D Navier-Stokes equations with jump, and following Flandoli and Romito (2008) [7] and Goldys et al. (2009) [8], we prove the existence of Markov selections for the martingale solutions. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2737 / 2778
页数:42
相关论文
共 50 条
  • [41] Dynamically stretched vortices as solutions of the 3D Navier-Stokes equations
    Gibbon, JD
    Fokas, AS
    Doering, CR
    [J]. PHYSICA D, 1999, 132 (04): : 497 - 510
  • [42] Spatial smoothness of the stationary solutions of the 3D Navier-Stokes equations
    Odasso, Cyril
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2006, 11 : 686 - 699
  • [43] A local smoothness criterion for solutions of the 3D Navier-Stokes equations
    Robinson, James C.
    Sadowski, Witold
    [J]. RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2014, 131 : 159 - 178
  • [44] A criterion for the existence of strong solutions for the 3D Navier-Stokes equations
    Kasyanov, Pavlo O.
    Toscano, Luisa
    Zadoianchuk, Nina V.
    [J]. APPLIED MATHEMATICS LETTERS, 2013, 26 (01) : 15 - 17
  • [45] GLOBAL STABILITY OF LARGE SOLUTIONS TO THE 3D NAVIER-STOKES EQUATIONS
    PONCE, G
    RACKE, R
    SIDERIS, TC
    TITI, ES
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 159 (02) : 329 - 341
  • [46] Topological properties of strong solutions for the 3D Navier-Stokes equations
    Kasyanov, Pavlo O.
    Toscano, Luisa
    Zadoianchuk, Nina V.
    [J]. Solid Mechanics and its Applications, 2014, 211 : 181 - 187
  • [47] On Anisotropic Regularity Criteria for the Solutions to 3D Navier-Stokes Equations
    Penel, Patrick
    Pokorny, Milan
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2011, 13 (03) : 341 - 353
  • [48] Enstropy generation and regularity of solutions to the 3D Navier-Stokes equations
    Doering, Charles R.
    Lu, Lu
    [J]. IUTAM SYMPOSIUM ON COMPUTATIONAL PHYSICS AND NEW PERSPECTIVES IN TURBULENCE, 2008, 4 : 47 - 48
  • [49] Regularity criteria for strong solutions to the 3D Navier-Stokes equations
    Younsi, Abdelhafid
    [J]. SYSTEMS SCIENCE & CONTROL ENGINEERING, 2015, 3 (01): : 262 - 265
  • [50] MARKOV SELECTION FOR THE STOCHASTIC COMPRESSIBLE NAVIER-STOKES SYSTEM
    Breit, Dominic
    Feireisl, Eduard
    Hofmanova, Martina
    [J]. ANNALS OF APPLIED PROBABILITY, 2020, 30 (06): : 2547 - 2572