Suppression of oscillations in mean-field diffusion

被引:11
|
作者
Kamal, Neeraj Kumar [1 ,3 ]
Sharma, Pooja Rani [2 ,3 ]
Shrimali, Manish Dev [3 ]
机构
[1] Inst Math Sci, Madras 600113, Tamil Nadu, India
[2] LNM Inst Informat Technol, Jaipur 302031, Rajasthan, India
[3] Cent Univ Rajasthan, Dept Phys, Ajmer 305801, India
来源
PRAMANA-JOURNAL OF PHYSICS | 2015年 / 84卷 / 02期
关键词
Oscillation death; conjugate coupling; mean-field diffusion; PHASE DEATH;
D O I
10.1007/s12043-015-0929-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the role of mean-field diffusive coupling on suppression of oscillations for systems of limit cycle oscillators. We show that this coupling scheme not only induces amplitude death (AD) but also oscillation death (OD) in coupled identical systems. The suppression of oscillations in the parameter space crucially depends on the value of mean-field diffusion parameter. It is also found that the transition from oscillatory solutions to OD in conjugate coupling case is different from the case when the coupling is through similar variable. We rationalize our study using linear stability analysis.
引用
收藏
页码:237 / 247
页数:11
相关论文
共 50 条
  • [21] Faster Is More Different: Mean-Field Dynamics of Innovation Diffusion
    Baek, Seung Ki
    Durang, Xavier
    Kim, Mina
    PLOS ONE, 2013, 8 (07):
  • [22] Mean-field stochastic differential equations with a discontinuous diffusion coefficient
    Nykanen, Jani
    PROBABILITY UNCERTAINTY AND QUANTITATIVE RISK, 2023, 8 (03): : 351 - 372
  • [23] A mean-field lattice model for the diffusion-controlled aggregation
    Sakaguchi, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1999, 68 (01) : 61 - 63
  • [24] Diffusion-limited aggregation: A revised mean-field approach
    Bogoyavlenskiy, Vladislav A.
    Chernova, Natasha A.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2000, 61 (05): : 5422 - 5428
  • [25] MEAN-FIELD DIFFUSION-LIMITED AGGREGATION IN RADIAL GEOMETRIES
    LEVINE, H
    TU, YH
    PHYSICAL REVIEW A, 1992, 45 (02): : 1053 - 1057
  • [26] MODEL-FREE MEAN-FIELD REINFORCEMENT LEARNING: MEAN-FIELD MDP AND MEAN-FIELD Q-LEARNING
    Carmona, Rene
    Lauriere, Mathieu
    Tan, Zongjun
    ANNALS OF APPLIED PROBABILITY, 2023, 33 (6B): : 5334 - 5381
  • [27] Explosive death induced by mean-field diffusion in identical oscillators
    Verma, Umesh Kumar
    Sharma, Amit
    Kamal, Neeraj Kumar
    Kurths, Juergen
    Shrimali, Manish Dev
    SCIENTIFIC REPORTS, 2017, 7
  • [28] Description of shape coexistence by mean-field and beyond mean-field methods
    Heenen, PH
    Bender, M
    Bonche, P
    Duguet, T
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2004, 13 (01): : 133 - 138
  • [29] MEAN-FIELD BUOYANCY
    KITCHATINOV, LL
    PIPIN, VV
    ASTRONOMY & ASTROPHYSICS, 1993, 274 (02): : 647 - 652
  • [30] Mean-field buoyancy
    Kichatinov, L.L.
    Pipin, V.V.
    Astronomy and Astrophysics, 1993, 274 (02):