Suppression of oscillations in mean-field diffusion

被引:11
|
作者
Kamal, Neeraj Kumar [1 ,3 ]
Sharma, Pooja Rani [2 ,3 ]
Shrimali, Manish Dev [3 ]
机构
[1] Inst Math Sci, Madras 600113, Tamil Nadu, India
[2] LNM Inst Informat Technol, Jaipur 302031, Rajasthan, India
[3] Cent Univ Rajasthan, Dept Phys, Ajmer 305801, India
来源
PRAMANA-JOURNAL OF PHYSICS | 2015年 / 84卷 / 02期
关键词
Oscillation death; conjugate coupling; mean-field diffusion; PHASE DEATH;
D O I
10.1007/s12043-015-0929-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the role of mean-field diffusive coupling on suppression of oscillations for systems of limit cycle oscillators. We show that this coupling scheme not only induces amplitude death (AD) but also oscillation death (OD) in coupled identical systems. The suppression of oscillations in the parameter space crucially depends on the value of mean-field diffusion parameter. It is also found that the transition from oscillatory solutions to OD in conjugate coupling case is different from the case when the coupling is through similar variable. We rationalize our study using linear stability analysis.
引用
收藏
页码:237 / 247
页数:11
相关论文
共 50 条
  • [1] Suppression of oscillations in mean-field diffusion
    NEERAJ KUMAR KAMAL
    POOJA RANI SHARMA
    MANISH DEV SHRIMALI
    Pramana, 2015, 84 : 237 - 247
  • [2] Amplitude death with mean-field diffusion
    Sharma, Amit
    Shrimali, Manish Dev
    PHYSICAL REVIEW E, 2012, 85 (05):
  • [3] MEAN-FIELD THEORIES FOR MULTIDIMENSIONAL DIFFUSION
    KAUFMAN, AD
    WHALEY, KB
    JOURNAL OF CHEMICAL PHYSICS, 1989, 90 (05): : 2758 - 2767
  • [4] Mean-field approach for diffusion of interacting particles
    Suarez, G.
    Hoyuelos, M.
    Martin, H.
    PHYSICAL REVIEW E, 2015, 92 (06):
  • [5] Mean-field ranking games with diffusion control
    Ankirchner, S.
    Kazi-Tani, N.
    Wendt, J.
    Zhou, C.
    MATHEMATICS AND FINANCIAL ECONOMICS, 2024, 18 (2-3) : 313 - 331
  • [6] Mean-Field Models for EEG/MEG: From Oscillations to Waves
    Byrne, Aine
    Ross, James
    Nicks, Rachel
    Coombes, Stephen
    BRAIN TOPOGRAPHY, 2022, 35 (01) : 36 - 53
  • [7] Mean-Field Models for EEG/MEG: From Oscillations to Waves
    Áine Byrne
    James Ross
    Rachel Nicks
    Stephen Coombes
    Brain Topography, 2022, 35 : 36 - 53
  • [8] Validity of the mean-field approximation for diffusion on a random comb
    Revathi, S
    Balakrishnan, V
    Lakshmibala, S
    Murthy, KPN
    PHYSICAL REVIEW E, 1996, 54 (03): : 2298 - 2302
  • [9] Lattice mean-field method for stationary polymer diffusion
    Scheinhardt-Engels, SM
    Leermakers, FAM
    Fleer, GJ
    PHYSICAL REVIEW E, 2003, 68 (01):
  • [10] Nonlinear turbulent magnetic diffusion and mean-field dynamo
    Rogachevskii, I
    Kleeorin, N
    PHYSICAL REVIEW E, 2001, 64 (05): : 14