Nonlinear Wave-Wave Coupling Related to Whistler-mode and Electron Bernstein Waves Observed by the Parker Solar Probe

被引:6
|
作者
Ma, Jiuqi [1 ,2 ]
Gao, Xinliang [1 ,2 ]
Yang, Zhongwei [1 ,2 ,3 ]
Tsurutani, Bruce T.
Liu, Mingzhe [4 ]
Lu, Quanming [1 ,2 ]
Wang, Shui [1 ,2 ]
机构
[1] Univ Sci & Technol China, Dept Geophys & Planetary Sci, CAS Key Lab Geospace Environm, Hefei, Peoples R China
[2] CAS Ctr Excellence Comparat Planetol, Hefei, Peoples R China
[3] Chinese Acad Sci, Natl Space Sci Ctr, State Key Lab Space Weather, Beijing, Peoples R China
[4] Univ Paris 05, Sorbonne Univ, PSL Univ, LESIA,Paris Observ,CNRS, 5 Pl Jules Janssen, F-92195 Meudon, France
来源
ASTROPHYSICAL JOURNAL | 2021年 / 918卷 / 01期
关键词
CYCLOTRON FREQUENCY; MULTIBAND CHORUS; PLASMA-WAVES; GENERATION; EMISSIONS; WIND;
D O I
10.3847/1538-4357/ac0ef4
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We report nonlinear wave-wave coupling related to whistler-mode or electron Bernstein waves in the near-Sun slow solar wind with Parker Solar Probe (PSP) data. Prominent plasma wave power enhancements usually exist near the electron gyrofrequency (f (ce)), identified as electrostatic whistler-mode and electron Bernstein waves (Malaspina et al. 2020). We find that these plasma waves near f (ce) typically have a harmonic spectral structure and further classify them into three types identified by the characteristics of wave frequency and electric power. For short, we will call these type i, type ii, and type iii waves. The first (type i) is the quasi-electrostatic whistler-mode wave and its second harmonic, which resembles the quasi-electrostatic multiband chorus in the Earth's magnetosphere. The second (type II) is the pure electron Bernstein wave. The last (type iii) is an intermixture of whistler-mode and electron Bernstein waves, where the wave mode driven by the coupling between them was also detected. During the first five orbits of PSP, the type iii spectra have the largest occurrence rate, then the type i spectra. The type ii spectra are the rarest type of wave. Our study reveals that nonlinear wave-wave coupling in the solar wind may be as common as in the Earth's magnetosphere.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] The effect of wave frequency drift on the electron nonlinear resonant interaction with whistler-mode waves
    Artemyev, Anton V. V.
    Albert, Jay M. M.
    Neishtadt, Anatoli I. I.
    Mourenas, Didier
    PHYSICS OF PLASMAS, 2023, 30 (01)
  • [2] Parker Solar Probe Evidence for Scattering of Electrons in the Young Solar Wind by Narrowband Whistler-mode Waves
    Cattell, C.
    Breneman, A.
    Dombeck, J.
    Short, B.
    Wygant, J.
    Halekas, J.
    Case, Tony
    Kasper, J. C.
    Larson, D.
    Stevens, Mike
    Whittesley, P.
    Bale, S. D.
    de Wit, T. Dudok
    Goodrich, K.
    MacDowall, R.
    Moncuquet, M.
    Malaspina, D.
    Pulupa, M.
    ASTROPHYSICAL JOURNAL LETTERS, 2021, 911 (02)
  • [3] Narrowband oblique whistler-mode waves: Comparing properties observed by Parker Solar Probe at <0.3 AU and STEREO at 1 AU
    Cattell, C.
    Short, B.
    Breneman, A.
    Halekas, J.
    Whittesley, P.
    Larson, D.
    Kasper, J.C.
    Stevens, M.
    Case, T.
    Moncuquet, M.
    Bale, S.
    Bonnell, J.
    Dudok De Wit, T.
    Goetz, K.
    Harvey, P.
    MacDowall, R.
    Malaspina, D.
    Maksimovic, M.
    Pulupa, M.
    Goodrich, K.
    Astronomy and Astrophysics, 2021, 650
  • [4] Narrowband oblique whistler-mode waves: comparing properties observed by Parker Solar Probe at <0.3 AU and STEREO at 1 AU
    Cattell, C.
    Short, B.
    Breneman, A.
    Halekas, J.
    Whittesley, P.
    Larson, D.
    Kasper, J. C.
    Stevens, M.
    Case, T.
    Moncuquet, M.
    Bale, S.
    Bonnell, J.
    de Wit, T. Dudok
    Goetz, K.
    Harvey, P.
    MacDowall, R.
    Malaspina, D.
    Maksimovic, M.
    Pulupa, M.
    Goodrich, K.
    ASTRONOMY & ASTROPHYSICS, 2021, 650
  • [5] Characteristics of the Poynting flux and wave normal vectors of whistler-mode waves observed on THEMIS
    Li, Wen
    Bortnik, J.
    Thorne, R. M.
    Cully, C. M.
    Chen, L.
    Angelopoulos, V.
    Nishimura, Y.
    Tao, J. B.
    Bonnell, J. W.
    LeContel, O.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2013, 118 (04) : 1461 - 1471
  • [6] Mapping for nonlinear electron interaction with whistler-mode waves
    Artemyev, A. V.
    Neishtadt, A. I.
    Vasiliev, A. A.
    PHYSICS OF PLASMAS, 2020, 27 (04)
  • [7] Nonlinear Coupling Between Whistler-Mode Chorus and Electron Cyclotron Harmonic Waves in the Magnetosphere
    Gao, Zhonglei
    Su, Zhenpeng
    Xiao, Fuliang
    Summers, Danny
    Liu, Nigang
    Zheng, Huinan
    Wang, Yuming
    Wei, Fengsi
    Wang, Shui
    GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (23) : 12685 - 12693
  • [8] Relativistic Electron Precipitation Driven by Nonlinear Resonance With Whistler-Mode Waves
    Tsai, Ethan
    Artemyev, Anton
    Zhang, Xiao-Jia
    Angelopoulos, Vassilis
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2022, 127 (05)
  • [9] Electron Diffusion and Advection During Nonlinear Interactions With Whistler-Mode Waves
    Allanson, O.
    Watt, C. E. J.
    Allison, H. J.
    Ratcliffe, H.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2021, 126 (05)
  • [10] Unified View of Nonlinear Wave Structures Associated with Whistler-Mode Chorus
    An, Xin
    Li, Jinxing
    Bortnik, Jacob
    Decyk, Viktor
    Kletzing, Craig
    Hospodarsky, George
    PHYSICAL REVIEW LETTERS, 2019, 122 (04)