Design of Reverse Converters for a New Flexible RNS Five-Moduli Set {2k, 2n - 1, 2n + 1, 2n+1 - 1, 2n-1 - 1} (n Even) (vol 36, pg 4593, 2017)

被引:0
|
作者
Patronik, Piotr [1 ]
Piestrak, Stanislaw J. [2 ]
机构
[1] Wroclaw Univ Technol, Dept Comp Engn W 4 K 9, PL-50370 Wroclaw, Poland
[2] Univ Lorraine, CNRS, Inst Jean Lamour, Res Team MAE,UMR 7198, F-54506 Vandoeuvre Les Nancy, France
关键词
D O I
10.1007/s00034-018-0865-x
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The original version of the article is missing the below funding information.
引用
收藏
页码:5197 / 5197
页数:1
相关论文
共 50 条
  • [31] Simple, Fast, and Exact RNS Scaler for the Three-Moduli Set {2n-1, 2n, 2n+1}
    Chang, Chip-Hong
    Low, Jeremy Yung Shern
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2011, 58 (11) : 2686 - 2697
  • [32] New efficient residue-to-binary converters for 4-moduli set {2n-1, 2n, 2n+1, 2n+1-1}
    Cao, B
    Chang, CH
    Srikanthan, T
    PROCEEDINGS OF THE 2003 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL IV: DIGITAL SIGNAL PROCESSING-COMPUTER AIDED NETWORK DESIGN-ADVANCED TECHNOLOGY, 2003, : 536 - 539
  • [33] A Unified Addition Structure for Moduli Set {2n-1, 2n, 2n+1} Based on a Novel RNS Representation
    Timarchi, Somayeh
    Fazlali, Mahmood
    Cotofana, Sorin D.
    2010 IEEE INTERNATIONAL CONFERENCE ON COMPUTER DESIGN, 2010, : 247 - 252
  • [34] Efficient VLSI Implementation of 2n Scaling of Signed Integer in RNS {2n-1, 2n, 2n+1}
    Tay, Thian Fatt
    Chang, Chip-Hong
    Low, Jeremy Yung Shern
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2013, 21 (10) : 1936 - 1940
  • [35] A memoryless reverse converter for the 4-moduli superset {2n-1, 2n, 2n+1, 2n+1-1}
    Vinod, AP
    Premkumar, AB
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2000, 10 (1-2) : 85 - 99
  • [36] Area-Power Efficient Modulo 2n-1 and Modulo 2n+1 Multipliers for {2n-1, 2n, 2n+1} Based RNS
    Muralidharan, Ramya
    Chang, Chip-Hong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2012, 59 (10) : 2263 - 2274
  • [37] Fast Sign Detection Algorithm for the RNS Moduli Set {2n+1-1, 2n-1, 2n}
    Xu, Minghe
    Bian, Zhenpeng
    Yao, Ruohe
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2015, 23 (02) : 379 - 383
  • [38] A Reverse Converter for Three-Moduli Set (2k, 2n-1, 2n+1), k < n
    Hiasat, Ahmad
    2019 IEEE JORDAN INTERNATIONAL JOINT CONFERENCE ON ELECTRICAL ENGINEERING AND INFORMATION TECHNOLOGY (JEEIT), 2019, : 548 - 553
  • [39] Reverse converter for the flexible moduli set {2n+k, 22n-1-1, 2n/2+1, 2n/2-1}
    Noorimehr, Mohammad Reza
    Hosseinzadeh, Mehdi
    Farshidi, Reza
    IEICE ELECTRONICS EXPRESS, 2012, 9 (01): : 8 - 15
  • [40] RNS-to-Binary Converter for New Four-Moduli Set {2n-1, 2n, 2n+1-1, 2n+1+2n-1}
    Quan Si
    Pan Weitao
    Xie Yuanbin
    Hao Yue
    CHINESE JOURNAL OF ELECTRONICS, 2012, 21 (03): : 430 - 434