Robust eigenvector algorithms for blind deconvolution of MIMO linear channels

被引:0
|
作者
Kawamoto, Mitsuru [1 ]
Kohno, Kiyotaka [2 ]
Inouye, Yujiro [2 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Cent 2,1-1-1 Umezona, Tsukuba, Ibaraki 3058568, Japan
[2] Shimane Univ, Matsue, Shimane 690854, Japan
来源
2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PTS 1-3, PROCEEDINGS | 2007年
关键词
eigenvector algorithms; robust eigenvector algorithms; blind deconvolution; MIMO-IIR channels;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper presents eigenvector algorithms (EVAs) for blind deconvolution of multiple-input multiple-output infinite impulse response (MIMO-IIR) channels (convolutive mixtures). One of the attractive features of the proposed EVA is that it is insensitive to Gaussian noises which are added to the outputs of the channels; hence the proposed EVA is referred to as a "robust" eigenvector algorithm (REVA). Simulation results show the validity of the REVA.
引用
收藏
页码:729 / +
页数:2
相关论文
共 50 条
  • [41] Bayesian blind MIMO deconvolution of nonstationary autoregressive sources mixed through all-pole channels
    Hopgood, JR
    PROCEEDINGS OF THE 2003 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING, 2003, : 422 - 425
  • [42] Blind deconvolution of discrete linear systems
    Gamboa, F
    Gassiat, E
    ANNALS OF STATISTICS, 1996, 24 (05): : 1964 - 1981
  • [43] Design of MIMO communication systems robust to eigenvector mismatch problem
    Taniguchi, T
    Takemoto, R
    Tran, NX
    Karasawa, Y
    PROCEEDINGS OF THE 3RD IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY, 2003, : 74 - 77
  • [44] A class of multi-modulus blind deconvolution algorithms using hyperbolic and Givens rotations for MIMO systems
    Mayyala, Qadri
    Abed-Meraim, Karim
    Zerguine, Azzedine
    SIGNAL PROCESSING, 2021, 183
  • [45] Blind Deconvolution Meets Blind Demixing: Algorithms and Performance Bounds
    Ling, Shuyang
    Strohmer, Thomas
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (07) : 4497 - 4520
  • [46] Linear prediction based semi-blind estimation of MIMO FIR channels
    Medles, A
    Slock, DTM
    De Carvalho, E
    2001 IEEE THIRD WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS, PROCEEDINGS, 2001, : 58 - 61
  • [47] Parametric approach to blind deconvolution of nonlinear channels
    Sole, J
    Jutten, C
    Taleb, A
    NEUROCOMPUTING, 2002, 48 : 339 - 355
  • [48] GREATEST COMMON DIVISOR ALGORITHMS AND BLIND DECONVOLUTION
    MOUYAN, Z
    UNBEHAUEN, R
    AEU-ARCHIV FUR ELEKTRONIK UND UBERTRAGUNGSTECHNIK-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 1995, 49 (03): : 160 - 169
  • [49] Robust super-exponential methods for blind deconvolution of MIMO-IIR systems with Gaussian noise
    Kohno, Kiyotaka
    Inouye, Yujiro
    Kawamoto, Mitsuru
    2006 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, PROCEEDINGS, 2006, : 3598 - 3601
  • [50] Blind deconvolution by iterative Fourier transform algorithms
    Takahashi, T
    Takajo, H
    Maki, H
    Dainty, JC
    17TH CONGRESS OF THE INTERNATIONAL COMMISSION FOR OPTICS: OPTICS FOR SCIENCE AND NEW TECHNOLOGY, PTS 1 AND 2, 1996, 2778 : 517 - 518