Stochastic volatility;
Scale mixture of normal;
Heavy tails;
Leverage;
Outlier diagnostics;
MONTE-CARLO METHODS;
LIKELIHOOD INFERENCE;
TIME-SERIES;
D O I:
10.1016/j.csda.2010.07.008
中图分类号:
TP39 [计算机的应用];
学科分类号:
081203 ;
0835 ;
摘要:
This paper studies a heavy-tailed stochastic volatility (SV) model with leverage effect, where a bivariate Student-t distribution is used to model the error innovations of the return and volatility equations. Choy et al. (2008) studied this model by expressing the bivariate Student-t distribution as a scale mixture of bivariate normal distributions. We propose an alternative formulation by first deriving a conditional Student-t distribution for the return and a marginal Student-t distribution for the log-volatility and then express these two Student-t distributions as a scale mixture of normal (SMN) distributions. Our approach separates the sources of outliers and allows for distinguishing between outliers generated by the return process or by the volatility process, and hence is an improvement over the approach of Choy et al. (2008). In addition, it allows an efficient model implementation using the WinBUGS software. A simulation study is conducted to assess the performance of the proposed approach and its comparison with the approach by Choy et al. (2008). In the empirical study, daily exchange rate returns of the Australian dollar to various currencies and daily stock market index returns of various international stock markets are analysed. Model comparison relies on the Deviance Information Criterion and convergence diagnostic is monitored by Geweke's convergence test. (C) 2010 Elsevier B.V. All rights reserved.
机构:
Univ Nacl Autonoma Mexico, Inst Appl Math & Syst, AP 20-726, Mexico City 01000, DF, MexicoUniv Nacl Autonoma Mexico, Inst Appl Math & Syst, AP 20-726, Mexico City 01000, DF, Mexico
Bladt, Mogens
Rojas-Nandayapa, Leonardo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Liverpool, Inst Financial & Actuarial Math, Math Sci Bldg, Liverpool L69 7ZL, Merseyside, EnglandUniv Nacl Autonoma Mexico, Inst Appl Math & Syst, AP 20-726, Mexico City 01000, DF, Mexico
机构:
Comenius Univ, Dept Appl Math & Stat, Bratislava 84248, Slovakia
Slovak Acad Sci, Math Inst, Bratislava 81473, SlovakiaComenius Univ, Dept Appl Math & Stat, Bratislava 84248, Slovakia
Bokes, Pavol
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT,
2021,
2021
(11):