Stochastic volatility;
Scale mixture of normal;
Heavy tails;
Leverage;
Outlier diagnostics;
MONTE-CARLO METHODS;
LIKELIHOOD INFERENCE;
TIME-SERIES;
D O I:
10.1016/j.csda.2010.07.008
中图分类号:
TP39 [计算机的应用];
学科分类号:
081203 ;
0835 ;
摘要:
This paper studies a heavy-tailed stochastic volatility (SV) model with leverage effect, where a bivariate Student-t distribution is used to model the error innovations of the return and volatility equations. Choy et al. (2008) studied this model by expressing the bivariate Student-t distribution as a scale mixture of bivariate normal distributions. We propose an alternative formulation by first deriving a conditional Student-t distribution for the return and a marginal Student-t distribution for the log-volatility and then express these two Student-t distributions as a scale mixture of normal (SMN) distributions. Our approach separates the sources of outliers and allows for distinguishing between outliers generated by the return process or by the volatility process, and hence is an improvement over the approach of Choy et al. (2008). In addition, it allows an efficient model implementation using the WinBUGS software. A simulation study is conducted to assess the performance of the proposed approach and its comparison with the approach by Choy et al. (2008). In the empirical study, daily exchange rate returns of the Australian dollar to various currencies and daily stock market index returns of various international stock markets are analysed. Model comparison relies on the Deviance Information Criterion and convergence diagnostic is monitored by Geweke's convergence test. (C) 2010 Elsevier B.V. All rights reserved.
机构:
Univ Fed Rio de Janeiro, Dept Stat, BR-21945970 Rio De Janeiro, RJ, BrazilUniv Fed Rio de Janeiro, Dept Stat, BR-21945970 Rio De Janeiro, RJ, Brazil
Abanto-Valle, C. A.
Bandyopadhyay, D.
论文数: 0引用数: 0
h-index: 0
机构:
Med Univ S Carolina, Dept Biostat Bioinformat & Epidemiol, Charleston, SC 29425 USAUniv Fed Rio de Janeiro, Dept Stat, BR-21945970 Rio De Janeiro, RJ, Brazil
Bandyopadhyay, D.
Lachos, V. H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Estadual Campinas, Dept Stat, Campinas, SP, BrazilUniv Fed Rio de Janeiro, Dept Stat, BR-21945970 Rio De Janeiro, RJ, Brazil
Lachos, V. H.
Enriquez, I.
论文数: 0引用数: 0
h-index: 0
机构:
Sao Paulo State Univ, Dept Stat, Sao Paulo, BrazilUniv Fed Rio de Janeiro, Dept Stat, BR-21945970 Rio De Janeiro, RJ, Brazil
机构:
Univ Fed Rio de Janeiro, Dept Stat, Caixa Postal 68530, BR-21945970 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, Dept Stat, Caixa Postal 68530, BR-21945970 Rio De Janeiro, Brazil
Abanto-Valle, Carlos A.
Langrock, Roland
论文数: 0引用数: 0
h-index: 0
机构:
Bielefeld Univ, Dept Business Adm & Econ, Postfach 10 01 31, D-33501 Bielefeld, GermanyUniv Fed Rio de Janeiro, Dept Stat, Caixa Postal 68530, BR-21945970 Rio De Janeiro, Brazil
Langrock, Roland
Chen, Ming-Hui
论文数: 0引用数: 0
h-index: 0
机构:
Univ Connecticut, Dept Stat, U-4120, Storrs, CT 06269 USAUniv Fed Rio de Janeiro, Dept Stat, Caixa Postal 68530, BR-21945970 Rio De Janeiro, Brazil
Chen, Ming-Hui
Cardoso, Michel V.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Dept Stat, Caixa Postal 68530, BR-21945970 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, Dept Stat, Caixa Postal 68530, BR-21945970 Rio De Janeiro, Brazil
机构:
Univ Fed Rio de Janeiro, Dept Stat, BR-21945970 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, Dept Stat, BR-21945970 Rio De Janeiro, Brazil
Abanto-Valle, Carlos Antonio
Lachos, Victor H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Estadual Campinas, Dept Stat, Campinas, SP, BrazilUniv Fed Rio de Janeiro, Dept Stat, BR-21945970 Rio De Janeiro, Brazil
Lachos, Victor H.
Ghosh, Pulak
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Management, Dept Quantitat Methods & Informat Syst, Bangalore, Karnataka, IndiaUniv Fed Rio de Janeiro, Dept Stat, BR-21945970 Rio De Janeiro, Brazil