Prediction of compressive strength of GGBS based concrete using RVM

被引:9
|
作者
Prasanna, P. K. [1 ]
Murthy, A. Ramachandra [2 ]
Srinivasu, K. [3 ]
机构
[1] Acharya Nagarjuna Univ AP, VR Siddhartha Engn Coll, Dept Civil Engn, Vijayawada, India
[2] CSIR, Struct Engn Res Ctr, Madras 600113, Tamil Nadu, India
[3] RVR&JC Coll Engn, Guntur, Andhra Pradesh, India
关键词
relevance vector machine; GGBS; concrete; compressive strength; variance; BLAST-FURNACE SLAG; FRACTURE CHARACTERISTICS; MECHANICAL-PROPERTIES; DURABILITY; METAKAOLIN; RESISTANCE; CAPACITY; MODEL;
D O I
10.12989/sem.2018.68.6.691
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Ground granulated blast furnace slag (GGBS) is a by product obtained from iron and steel industries, useful in the design and development of high quality cement paste/mortar and concrete. This paper investigates the applicability of relevance vector machine (RVM) based regression model to predict the compressive strength of various GGBS based concrete mixes. Compressive strength data for various GGBS based concrete mixes has been obtained by considering the effect of water binder ratio and steel fibres. RVM is a machine learning technique which employs Bayesian inference to obtain parsimonious solutions for regression and classification. The RVM is an extension of support vector machine which couples probabilistic classification and regression. RVM is established based on a Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. Compressive strength model has been developed by using MATLAB software for training and prediction. About 70% of the data has been used for development of RVM model and 30% of the data is used for validation. The predicted compressive strength for GGBS based concrete mixes is found to be in very good agreement with those of the corresponding experimental observations.
引用
收藏
页码:691 / 700
页数:10
相关论文
共 50 条
  • [31] Prediction of splitting tensile strength from the compressive strength of concrete using GEP
    Severcan, Metin Hakan
    NEURAL COMPUTING & APPLICATIONS, 2012, 21 (08): : 1937 - 1945
  • [32] Prediction of splitting tensile strength from the compressive strength of concrete using GEP
    Metin Hakan Severcan
    Neural Computing and Applications, 2012, 21 : 1937 - 1945
  • [33] Efficient machine learning algorithm with enhanced cat swarm optimization for prediction of compressive strength of GGBS-based geopolymer concrete at elevated temperature
    Dash, Pankaj Kumar
    Parhi, Suraj Kumar
    Patro, Sanjaya Kumar
    Panigrahi, Ramakanta
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 400
  • [34] Prediction mechanical properties of GGBS based on geopolymer concrete by using analytical method
    Rajini, B.
    Sashidhar, C.
    MATERIALS TODAY-PROCEEDINGS, 2019, 19 : 536 - 540
  • [35] Concrete compressive strength prediction using an explainable boosting machine model
    Liu, Gaoyang
    Sun, Bochao
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2023, 18
  • [36] Prediction of the compressive strength of concrete using various predictive modeling techniques
    Sakshi Gupta
    Parveen Sihag
    Neural Computing and Applications, 2022, 34 : 6535 - 6545
  • [37] Prediction of compressive strength of geopolymer concrete using machine learning techniques
    Gupta, Tanuja
    Rao, Meesala Chakradhara
    STRUCTURAL CONCRETE, 2022, 23 (05) : 3073 - 3090
  • [38] Prediction of the concrete compressive strength using improved random forest algorithm
    Khodaparasti M.
    Alijamaat A.
    Pouraminian M.
    Journal of Building Pathology and Rehabilitation, 2023, 8 (2)
  • [39] Prediction of concrete compressive strength using evolved polynomial neural networks
    Hamid-Zadeh, N.
    Jamali, A.
    Nariman-Zadeh, N.
    Akbarzadeh, H.
    WSEAS Transactions on Systems, 2007, 6 (04): : 802 - 807
  • [40] Prediction of compressive strength of sustainable concrete using machine learning tools
    Choudhary, Lokesh
    Sahu, Vaishali
    Dongre, Archanaa
    Garg, Aman
    COMPUTERS AND CONCRETE, 2024, 33 (02): : 137 - 145