Research on adaptive modulus maxima selection of wavelet modulus maxima denoising

被引:8
|
作者
Ding, Wensi [1 ]
Li, Zhiguo [1 ]
机构
[1] South China Univ Technol, Sch Mech & Automot Engn, Guangzhou, Guangdong, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
accelerometers; wavelet transforms; signal denoising; micromechanical devices; power consumption; mean square error methods; adaptive modulus maxima selection; microelectromechanical system accelerometers; MEMS accelerometer output signals; SureShrink threshold estimation; right modulus maxima; denoising performance; BayesShrink threshold estimation; normal wavelet modulus maxima denoising; wavelet modulus maxima method;
D O I
10.1049/joe.2018.8958
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Microelectromechanical system (MEMS) accelerometers are small in size, low in power consumption and easily integrated. They can be used in intelligent hydraulic components to obtain the dynamic acceleration of the system and monitor the operating status of the system. In this study, based on the noise characteristics of MEMS accelerometer output signals, a wavelet modulus maxima denoising algorithm based on adaptive threshold estimation is proposed, in which SureShrink threshold estimation is used to choose the right modulus maxima. Then, the signal-to-noise ratio and mean-square-error are used as the evaluating indices of the denoising performance for the wavelet modulus maxima denoising based on SureShrink threshold estimation, the wavelet modulus maxima denoising based on BayesShrink threshold estimation and the normal wavelet modulus maxima denoising. The simulation results show that the wavelet modulus maxima denoising based on SureShrink threshold estimation has better denoising performance than the normal modulus maxima denoising and the wavelet modulus maxima method based on BayesShrink threshold estimation, and effectively eliminates the noise of MEMS accelerometer output signals.
引用
收藏
页码:175 / 180
页数:6
相关论文
共 50 条
  • [31] Identification of the shaft orbit for rotating machines using wavelet modulus maxima
    Peng, Z
    He, Y
    Chen, Z
    Chu, F
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2002, 16 (04) : 623 - 635
  • [32] Wavelet transform modulus maxima-based robust logo watermarking
    Barr, Mohammad
    Serdean, Cristian
    IET IMAGE PROCESSING, 2020, 14 (04) : 697 - 708
  • [33] R-wave detection using continuous wavelet modulus maxima
    Legarreta, IR
    Addison, PS
    Grubb, N
    Clegg, GR
    Robertson, CE
    Fox, KAA
    Watson, JN
    COMPUTERS IN CARDIOLOGY 2003, VOL 30, 2003, 30 : 565 - 568
  • [34] Application of wavelet transform modulus maxima in boundary detection of potential fields
    ZHU Baojian
    DAI Weiming
    Global Geology, 2012, 15 (04) : 281 - 285
  • [35] Image reconstruction based on two-dimensional wavelet modulus maxima
    Deng, K
    Li, BF
    Zhou, L
    Shan, YF
    WAVELET ANALYSIS AND ACTIVE MEDIA TECHNOLOGY VOLS 1-3, 2005, : 267 - 272
  • [36] Analysis and identification of HVDC system faults using wavelet modulus maxima
    Shang, L
    Herold, G
    Jaeger, J
    Krebs, R
    Kumar, A
    SEVENTH INTERNATIONAL CONFERENCE ON AC-DC POWER TRANMISSION, 2001, (485): : 315 - 320
  • [37] Application of wavelet transform modulus maxima in raman distributed temperature sensors
    Wang Z.
    Chang J.
    Zhang S.
    Luo S.
    Jia C.
    Sun B.
    Jiang S.
    Liu Y.
    Liu X.
    Lv G.
    Liu Z.
    Photonic Sensors, 2014, 4 (02) : 142 - 146
  • [38] Reconstructing Sparse Signals from Dyadic Wavelet Transform Modulus Maxima
    Zhuosheng Zhang
    Haixing Lv
    Qingbao Zhou
    Hanqiu Zhang
    Circuits, Systems, and Signal Processing, 2014, 33 : 2667 - 2674
  • [39] Design and initialization algorithm based on modulus maxima of wavelet transform for wavelet neural network
    Zhang, DH
    Bi, YQ
    Bi, YB
    Sun, YT
    2004 INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY - POWERCON, VOLS 1 AND 2, 2004, : 897 - 901
  • [40] New reconstruction algorithm by interpolating images' dyadic wavelet transform modulus maxima
    You, JY
    Liu, GZ
    PROCEEDINGS OF THE 2004 INTERNATIONAL SYMPOSIUM ON INTELLIGENT MULTIMEDIA, VIDEO AND SPEECH PROCESSING, 2004, : 342 - 345