On the structure of Cohen-Macaulay modules over hypersurfaces of countable Cohen-Macaulay representation type

被引:9
|
作者
Araya, Tokuji [4 ]
Iima, Kei-ichiro [2 ]
Takahashi, Ryo [1 ,3 ]
机构
[1] Univ Nebraska, Dept Math, Lincoln, NE 68588 USA
[2] Nara Natl Coll Technol, Dept Liberal Studies, Yamato Koriyama, Nara 6391080, Japan
[3] Shinshu Univ, Fac Sci, Dept Math Sci, Matsumoto, Nagano 3908621, Japan
[4] Nara Univ Educ, Takabatake, Nara 6308528, Japan
关键词
Hypersurface; Maximal Cohen-Macaulay module; Countable Cohen-Macaulay representation type; Stable category; Knorrer's periodicity; SINGULARITIES; SUBCATEGORIES;
D O I
10.1016/j.jalgebra.2012.03.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a complete local hypersurface over an algebraically closed field of characteristic different from two, and suppose that R has countable Cohen-Macaulay (CM) representation type. In this paper, it is proved that the maximal Cohen-Macaulay (MCM) R-modules which are locally free on the punctured spectrum are dominated by the MCM R-modules which are not locally free on the punctured spectrum. More precisely, there exists a single R-module X such that the indecomposable MCM R-modules not locally free on the punctured spectrum are X and its syzygy Omega X and that any other MCM R-modules are obtained from extensions of X and Omega X. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:213 / 224
页数:12
相关论文
共 50 条
  • [41] MONOIDS OF MODULES OVER RINGS OF INFINITE COHEN-MACAULAY TYPE
    Baeth, Nicholas R.
    Saccon, Silvia
    JOURNAL OF COMMUTATIVE ALGEBRA, 2012, 4 (03) : 297 - 326
  • [42] COHEN-MACAULAY MODULE TYPE
    DROZD, YA
    GREUEL, GM
    COMPOSITIO MATHEMATICA, 1993, 89 (03) : 315 - 338
  • [43] On the notion of sequentially Cohen-Macaulay modules
    Caviglia, Giulio
    De Stefani, Alessandro
    Sbarra, Enrico
    Strazzanti, Francesco
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2022, 9 (03)
  • [44] Layered resolutions of Cohen-Macaulay modules
    Eisenbud, David
    Peeva, Irena
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2021, 23 (03) : 845 - 867
  • [45] DEGENERATIONS OF GRADED COHEN-MACAULAY MODULES
    Hiramatsu, Naoya
    JOURNAL OF COMMUTATIVE ALGEBRA, 2015, 7 (02) : 221 - 239
  • [46] Stable degenerations of Cohen-Macaulay modules
    Yoshino, Yuji
    JOURNAL OF ALGEBRA, 2011, 332 (01) : 500 - 521
  • [47] TOPICS ON SEQUENTIALLY COHEN-MACAULAY MODULES
    Taniguchi, Naoki
    Tran Thi Phuong
    Nguyen Thi Dung
    Tran Nguyen An
    JOURNAL OF COMMUTATIVE ALGEBRA, 2018, 10 (02) : 295 - 304
  • [49] SEQUENTIALLY ALMOST COHEN-MACAULAY MODULES
    Tabejamaat, Samaneh
    MATHEMATICAL REPORTS, 2022, 24 (03): : 453 - 459
  • [50] Generalities on maximal Cohen-Macaulay modules
    Burban, Igor
    Drozd, Yuriy
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 248 (1178) : 1 - +