Bayesian Inference of Parameters in Power System Dynamic Models Using Trajectory Sensitivities

被引:5
|
作者
Nagi, Rubinder [1 ]
Huan, Xun [2 ]
Chen, Yu Christine [1 ]
机构
[1] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada
[2] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Computational modeling; Trajectory; Mathematical model; Sensitivity; Data models; Load modeling; Bayes methods; Bayesian inference; Bayesian model selection; Bayes factor; dynamic model; parameter estimation; trajectory sensitivities;
D O I
10.1109/TPWRS.2021.3104536
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose an analytically tractable Bayesian method to infer parameters in power system dynamic models from noisy measurements of bus-voltage magnitudes and frequencies as well as active- and reactive-power injections. The proposed method is computationally appealing as it bypasses the large number of system model simulations typically required in sampling-based Bayesian inference. Instead, it relies on analytical linearization of the nonlinear system differential-algebraic-equation model enabled by trajectory sensitivities. Central to the proposed method is the construction of a linearized model with the maximum probability of being (closest to) the actual nonlinear model that gave rise to the measurement data. The linear model together with Gaussian prior leads to a conjugate family where the parameter posterior, model evidence, and their gradients can be computed in closed form, markedly improving scalability for large-scale power systems. We illustrate the effectiveness and key features of the proposed method with numerical case studies for a three-bus system. Algorithmic scalability is then demonstrated via case studies involving the New England 39-bus test system.
引用
收藏
页码:1253 / 1263
页数:11
相关论文
共 50 条
  • [41] Power systems voltage emergency control approach using trajectory sensitivities
    Zima, M
    Korba, P
    Andersson, G
    CCA 2003: PROCEEDINGS OF 2003 IEEE CONFERENCE ON CONTROL APPLICATIONS, VOLS 1 AND 2, 2003, : 189 - 194
  • [42] Bayesian inference about parameters of a longitudinal trajectory when selection operates on a correlated trait
    Piles, M
    Gianola, D
    Varona, L
    Blasco, A
    JOURNAL OF ANIMAL SCIENCE, 2003, 81 (11) : 2714 - 2724
  • [43] Gene networks inference using dynamic Bayesian networks
    Perrin, Bruno-Edouard
    Ralaivola, Liva
    Mazurie, Aurelien
    Bottani, Samuele
    Mallet, Jacques
    d'Alche-Buc, Florence
    BIOINFORMATICS, 2003, 19 : II138 - II148
  • [44] Inference in hybrid Bayesian networks using dynamic discretization
    Martin Neil
    Manesh Tailor
    David Marquez
    Statistics and Computing, 2007, 17 : 219 - 233
  • [45] Inference in hybrid Bayesian networks using dynamic discretization
    Neil, Martin
    Tailor, Manesh
    Marquez, David
    STATISTICS AND COMPUTING, 2007, 17 (03) : 219 - 233
  • [46] Bayesian Inference in Dynamic Domains using Logical OR Gates
    Claessens, Rik
    de Waal, Alta
    de Villiers, Pieter
    Penders, Ate
    Pavlin, Gregor
    Tuyls, Karl
    PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS, VOL 2 (ICEIS), 2016, : 134 - 142
  • [47] Parameter optimisation using Bayesian inference for spallation models
    Hirtz, J.
    David, J. -c.
    Cugnon, J.
    Leya, I.
    Rodriguez-Sanchez, J. L.
    Schnabel, G.
    EUROPEAN PHYSICAL JOURNAL A, 2024, 60 (07):
  • [48] INFERENCE FOR NONCONJUGATE BAYESIAN MODELS USING THE GIBBS SAMPLER
    CARLIN, BP
    POLSON, NG
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1991, 19 (04): : 399 - 405
  • [49] Bayesian inference in STAR models using neighbourhood effects
    Beamonte, Asuncion
    Gargallo, Pilar
    Salvador, Manuel
    STATISTICAL MODELLING, 2008, 8 (03) : 285 - 311
  • [50] Bayesian Inference of Species Trees using Diffusion Models
    Stoltz, Marnus
    Baeumer, Boris
    Bouckaert, Remco
    Fox, Colin
    Hiscott, Gordon
    Bryant, David
    SYSTEMATIC BIOLOGY, 2021, 70 (01) : 145 - 161