Iterative Sparse Matrix-Vector Multiplication on In-Memory Cluster Computing Accelerated by GPUs for Big Data

被引:0
|
作者
Peng, Jiwu [1 ,2 ]
Xiao, Zheng [1 ,2 ]
Chen, Cen [1 ,2 ]
Yang, Wangdong [1 ,2 ]
机构
[1] Hunan Univ, Coll Informat Sci & Engn, Changsha 410082, Hunan, Peoples R China
[2] Natl Supercomp Ctr Changsha, Changsha 410082, Hunan, Peoples R China
关键词
Iterative SpMV; Flink; GPU; In-memory Computing; BigData;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Iterative SpMV (ISpMV) is a key operation in many graph-based data mining algorithms and machine learning algorithms. Along with the development of big data, the matrices can be so large, perhaps billion-scale, that the SpMV can not be implemented in a single computer. Therefore, it is a challenging issue to implement and optimize SpMV for large-scale data sets. In this paper, we used an in-memory heterogeneous CPU-GPU cluster computing platforms (IMHCPs) to efficiently solve billion-scale SpMV problem. A dedicated and efficient hierarchy partitioning strategy for sparse matrices and the vector is proposed. The partitioning strategy contains partitioning sparse matrices among workers in the cluster and among GPUs in one worker. More, the performance of the IMHCPs-based SpMV is evaluated from the aspects of computation efficiency and scalability.
引用
收藏
页码:1454 / 1460
页数:7
相关论文
共 50 条
  • [31] CUDA-enabled Sparse Matrix-Vector Multiplication on GPUs using atomic operations
    Dang, Hoang-Vu
    Schmidt, Bertil
    PARALLEL COMPUTING, 2013, 39 (11) : 737 - 750
  • [33] An Efficient Two-Dimensional Blocking Strategy for Sparse Matrix-Vector Multiplication on GPUs
    Ashari, Arash
    Sedaghati, Naser
    Eisenlohr, John
    Sadayappan, P.
    PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON SUPERCOMPUTING, (ICS'14), 2014, : 273 - 282
  • [34] The Sliced COO format for Sparse Matrix-Vector Multiplication on CUDA-enabled GPUs
    Dang, Hoang-Vu
    Schmidt, Bertil
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2012, 2012, 9 : 57 - 66
  • [35] Performance Analysis of Sparse Matrix-Vector Multiplication (SpMV) on Graphics Processing Units (GPUs)
    AlAhmadi, Sarah
    Mohammed, Thaha
    Albeshri, Aiiad
    Katib, Iyad
    Mehmood, Rashid
    ELECTRONICS, 2020, 9 (10) : 1 - 30
  • [36] Hierarchical Matrix Operations on GPUs: Matrix-Vector Multiplication and Compression
    Boukaram, Wajih
    Turkiyyah, George
    Keyes, David
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2019, 45 (01):
  • [37] Sparse Matrix-Vector Multiplication with Reduced-Precision Memory Accessor
    Mukunoki, Daichi
    Kawai, Masatoshi
    Imamura, Toshiyuki
    2023 IEEE 16TH INTERNATIONAL SYMPOSIUM ON EMBEDDED MULTICORE/MANY-CORE SYSTEMS-ON-CHIP, MCSOC, 2023, : 608 - 615
  • [38] A High Memory Bandwidth FPGA Accelerator for Sparse Matrix-Vector Multiplication
    Fowers, Jeremy
    Ovtcharov, Kalin
    Strauss, Karin
    Chung, Eric S.
    Stitt, Greg
    2014 IEEE 22ND ANNUAL INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM 2014), 2014, : 36 - 43
  • [39] An Efficient Sparse Matrix-Vector Multiplication on Distributed Memory Parallel Computers
    Shahnaz, Rukhsana
    Usman, Anila
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2007, 7 (01): : 77 - 82
  • [40] Optimising Memory Bandwidth Use for Matrix-Vector Multiplication in Iterative Methods
    Boland, David
    Constantinides, George A.
    RECONFIGURABLE COMPUTING: ARCHITECTURES, TOOLS AND APPLICATIONS, 2010, 5992 : 169 - 181