Weak convergence to the fractional Brownian sheet in Besov spaces

被引:11
|
作者
Tudor, CA [1 ]
机构
[1] Univ Paris 06, Lab Probabil & Modeles Aleatoires, F-75252 Paris 5, France
来源
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY | 2003年 / 34卷 / 03期
关键词
fractional brownian motion; weak convergence; Besov spaces;
D O I
10.1007/s00574-003-0020-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the problem of the approximation in law of the fractional Brownian sheet in the topology of the anisotropic Besov spaces. We prove the convergence in law of two families of processes to the fractional Brownian sheet: the first family is constructed from a Poisson procces in the plane and the second family is defined by the partial sums of two sequences of real independent fractional brownian motions.
引用
收藏
页码:389 / 400
页数:12
相关论文
共 50 条
  • [41] ON THE LAMPERTI TRANSFORM OF THE FRACTIONAL BROWNIAN SHEET
    Khalil, Marwa
    Tudor, Ciprian
    Zili, Mounir
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (06) : 1466 - 1487
  • [42] Jumps in Besov spaces and fine properties of Besov and fractional Sobolev functions
    Hashash, Paz
    Poliakovsky, Arkady
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (02)
  • [43] On the Lamperti Transform of the Fractional Brownian Sheet
    Marwa Khalil
    Ciprian Tudor
    Mounir Zili
    Fractional Calculus and Applied Analysis, 2016, 19 : 1466 - 1487
  • [44] Weak convergence to Rosenblatt sheet
    Shen, Guangjun
    Yin, Xiuwei
    Zhu, Dongjin
    FRONTIERS OF MATHEMATICS IN CHINA, 2015, 10 (04) : 985 - 1004
  • [45] Weak convergence to Rosenblatt sheet
    Guangjun Shen
    Xiuwei Yin
    Dongjin Zhu
    Frontiers of Mathematics in China, 2015, 10 : 985 - 1004
  • [46] ON CONVERGENCE TO STATIONARITY OF FRACTIONAL BROWNIAN STORAGE
    Mandjes, Michel
    Norros, Ilkka
    Glynn, Peter
    ANNALS OF APPLIED PROBABILITY, 2009, 19 (04): : 1385 - 1403
  • [47] Regularity of Brownian local time in Besov-Orlicz spaces
    Boufoussi, B
    STUDIA MATHEMATICA, 1996, 118 (02) : 145 - 156
  • [48] WEAK CONVERGENCE IN THE SPACES HP
    TAYLOR, AE
    DUKE MATHEMATICAL JOURNAL, 1950, 17 (04) : 409 - 418
  • [49] On the Regularity of Weak Solutions of the Boussinesq Equations in Besov Spaces
    Barbagallo, Annamaria
    Gala, Sadek
    Ragusa, Maria Alessandra
    Thera, Michel
    VIETNAM JOURNAL OF MATHEMATICS, 2021, 49 (03) : 637 - 649
  • [50] OPTIMAL CONVERGENCE RATES FOR TIKHONOV REGULARIZATION IN BESOV SPACES
    Weidling, Frederic
    Sprung, Benjamin
    Hohage, Thorsten
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (01) : 21 - 47