Weak convergence to the fractional Brownian sheet in Besov spaces

被引:11
|
作者
Tudor, CA [1 ]
机构
[1] Univ Paris 06, Lab Probabil & Modeles Aleatoires, F-75252 Paris 5, France
来源
关键词
fractional brownian motion; weak convergence; Besov spaces;
D O I
10.1007/s00574-003-0020-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the problem of the approximation in law of the fractional Brownian sheet in the topology of the anisotropic Besov spaces. We prove the convergence in law of two families of processes to the fractional Brownian sheet: the first family is constructed from a Poisson procces in the plane and the second family is defined by the partial sums of two sequences of real independent fractional brownian motions.
引用
收藏
页码:389 / 400
页数:12
相关论文
共 50 条
  • [1] Weak convergence to the fractional Brownian sheet in Besov spaces
    Ciprian A. Tudor
    Bulletin of the Brazilian Mathematical Society, 2003, 34 : 389 - 400
  • [2] Weak convergence in Besov spaces to fractional Brownian motion
    Boufoussi, B
    Lakhel, EH
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (01): : 39 - 44
  • [3] Weak convergence to the fractional Brownian sheet using martingale differences
    Wang, Zhi
    Yan, Litan
    Yu, Xianye
    STATISTICS & PROBABILITY LETTERS, 2014, 92 : 72 - 78
  • [4] Weak convergence to multifractional Brownian motion of Riemann-Liouville type in Besov spaces
    Dai H.
    Journal of Applied Mathematics and Computing, 2012, 38 (1-2) : 601 - 615
  • [5] Weak convergence of summation processes in Besov spaces
    Morel, B
    STUDIA MATHEMATICA, 2004, 165 (01) : 19 - 37
  • [6] Weak convergence to fractional Brownian motion in Brownian scenery
    Wang, WS
    PROBABILITY THEORY AND RELATED FIELDS, 2003, 126 (02) : 203 - 220
  • [7] Weak convergence to fractional Brownian motion in Brownian scenery
    Wensheng Wang
    Probability Theory and Related Fields, 2003, 126 : 203 - 220
  • [8] Weak convergence to the fractional Brownian sheet and other two-parameter Gaussian processes
    Bardina, X
    Jolis, M
    Tudor, CA
    STATISTICS & PROBABILITY LETTERS, 2003, 65 (04) : 317 - 329
  • [9] WEAK CONVERGENCE TO DERIVATIVES OF FRACTIONAL BROWNIAN MOTION
    Johansen, Soren
    Nielsen, Morten Orregaard
    ECONOMETRIC THEORY, 2024, 40 (04) : 859 - 874
  • [10] Weak convergence of the complex fractional Brownian motion
    Sang, Liheng
    Shen, Guangjun
    Wang, Qingbo
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,