A gradient-based optimization approach for task scheduling problem in cloud computing

被引:12
|
作者
Huang, Xingwang [1 ]
Lin, Yangbin [1 ]
Zhang, Zongliang [1 ]
Guo, Xiaoxi [1 ]
Su, Shubin [1 ]
机构
[1] Jimei Univ, Comp Engn Coll, 185 Yinjiang Rd, Xiamen 361021, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Task scheduling; Cloud computing; Virtual machines; Gradient-based optimization; Makespan; RESOURCE-ALLOCATION; ALGORITHM;
D O I
10.1007/s10586-022-03580-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Task scheduling in cloud computing is a key component that affects the resource usage and operating costs of the system. In order to promote the efficiency of task executions in the cloud system, many heuristic algorithms and their variants have been used to optimize scheduling. Since makespan is the vital metric of cloud computing system, most of the relevant research focuses on improving this performance. The gradient-based optimization (GBO) has a faster convergence rate, and can avoid prematurely falling into the local optimum. In this work, we propose a task scheduling based on the GBO in the cloud to improve the makespan performance. Since the GBO is proposed for continuous optimization, rounding-off method is used to convert the real "vector" value of the GBO to the nearest integer value, thereby representing the solution of the task scheduling problem. To evaluate the performance of the proposed GBO-based scheduling method, two experimental cases are performed. The results of the two experimental cases show that compared with current heuristic algorithms, the GBO has better convergence speed and accuracy in searching for the optimal task scheduling solution, especially in the presence of large-scale tasks.
引用
收藏
页码:3481 / 3497
页数:17
相关论文
共 50 条
  • [41] An Adaptive Procedure for Task Scheduling Optimization in Mobile Cloud Computing
    Hung, Pham Phuoc
    Huh, Eui-Nam
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [42] A modified PSO algorithm for task scheduling optimization in cloud computing
    Zhou, Zhou
    Chang, Jian
    Hu, Zhigang
    Yu, Junyang
    Li, Fangmin
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2018, 30 (24):
  • [43] MHDNNL: A Batch Task Optimization Scheduling Algorithm in Cloud Computing
    Li, Qirui
    Peng, Zhiping
    Cui, Delong
    Lin, Jianpeng
    He, Jieguang
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY AND WEB ENGINEERING, 2022, 17 (01)
  • [44] The Intelligent Task Scheduling Algorithm in Cloud Computing with Multistage Optimization
    He, XiaoLi
    Song, Yu
    Binsack, Ralf Volker
    INTERNATIONAL JOURNAL OF GRID AND DISTRIBUTED COMPUTING, 2016, 9 (04): : 313 - 323
  • [45] Metaheuristic Optimization for Dynamic Task Scheduling in Cloud Computing Environments
    Du, Longyang
    Wang, Qingxuan
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (07) : 590 - 597
  • [46] Energy Optimization With Dynamic Task Scheduling Mobile Cloud Computing
    Li, Yibin
    Chen, Min
    Dai, Wenyun
    Qiu, Meikang
    IEEE SYSTEMS JOURNAL, 2017, 11 (01): : 96 - 105
  • [47] Task scheduling in cloud computing using hybrid optimization algorithm
    Khan, Mohd Sha Alam
    Santhosh, R.
    SOFT COMPUTING, 2022, 26 (23) : 13069 - 13079
  • [48] Task scheduling in cloud computing using hybrid optimization algorithm
    Mohd Sha Alam Khan
    R. Santhosh
    Soft Computing, 2022, 26 : 13069 - 13079
  • [49] A gradient-based optimization approach to the inverse problem for multi-layered structures
    Norgren, M
    He, SL
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 1999, 10 (04) : 315 - 335
  • [50] Opposition-based learning inspired particle swarm optimization (OPSO) scheme for task scheduling problem in cloud computing
    Agarwal, Mohit
    Srivastava, Gur Mauj Saran
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 12 (10) : 9855 - 9875