Fractional Supersymmetric Hermite Polynomials

被引:3
|
作者
Bouzeffour, Fethi [1 ]
Jedidi, Wissem [2 ,3 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
[2] King Saud Univ, Dept Stat & OR, POB 2455, Riyadh 11451, Saudi Arabia
[3] Univ Tunis El Manar, Lab Analyse Mathemat & Applicat LR11ES11, Fac Sci Tunis, Tunis 2092, Tunisia
关键词
orthogonal polynomials; difference-differential operator; supersymmetry; DEFORMED HEISENBERG ALGEBRA; POWER;
D O I
10.3390/math8020193
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a realization of fractional supersymmetry quantum mechanics of order r, where the Hamiltonian and the supercharges involve the fractional Dunkl transform as a Klein type operator. We construct several classes of functions satisfying certain orthogonality relations. These functions can be expressed in terms of the associated Laguerre orthogonal polynomials and have shown that their zeros are the eigenvalues of the Hermitian supercharge. We call them the supersymmetric generalized Hermite polynomials.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] On rings of supersymmetric polynomials
    Sergeev, A. N.
    JOURNAL OF ALGEBRA, 2019, 517 : 336 - 364
  • [32] Study of Numerical Solution to Some Fractional Order Differential Equation Using Hermite Polynomials
    Arfan M.
    Khan Z.A.
    Zeb A.
    Shah K.
    International Journal of Applied and Computational Mathematics, 2022, 8 (2)
  • [33] SOME POLYNOMIALS ASSOCIATED WITH GENERALIZED HERMITE POLYNOMIALS
    JOSHI, CM
    SINGHAL, JP
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (01): : 132 - &
  • [34] BIORTHOGONAL POLYNOMIALS SUGGESTED BY THE HERMITE-POLYNOMIALS
    THAKARE, NK
    MADHEKAR, HC
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1986, 17 (08): : 1031 - 1041
  • [35] ON SIMILARITIES BETWEEN EXPONENTIAL POLYNOMIALS AND HERMITE POLYNOMIALS
    Hetmaniok, Edyta
    Pleszczynski, Mariusz
    Slota, Damian
    Witula, Roman
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2013, 12 (03) : 93 - 104
  • [36] Hermite and Hermite-Fejer interpolation for Stieltjes polynomials
    Jung, HS
    MATHEMATICS OF COMPUTATION, 2006, 75 (254) : 743 - 766
  • [37] SOME RELATIONS ON HERMITE-HERMITE MATRIX POLYNOMIALS
    Shehata, Ayman
    Cekim, Bayram
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2016, 78 (01): : 181 - 194
  • [38] Zeros of exceptional Hermite polynomials
    Kuijlaars, A. B. J.
    Milson, R.
    JOURNAL OF APPROXIMATION THEORY, 2015, 200 : 28 - 39
  • [39] A NOTE ON THE HERMITE NUMBERS AND POLYNOMIALS
    Kim, Dae San
    Kim, Taekyun
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2013, 16 (04): : 1115 - 1122
  • [40] Representations of degenerate Hermite polynomials
    Kim, Taekyun
    San Kim, Dae
    Jang, Lee-Chae
    Lee, Hyunseok
    Kim, Hanyoung
    ADVANCES IN APPLIED MATHEMATICS, 2022, 139