Fractional Supersymmetric Hermite Polynomials

被引:3
|
作者
Bouzeffour, Fethi [1 ]
Jedidi, Wissem [2 ,3 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
[2] King Saud Univ, Dept Stat & OR, POB 2455, Riyadh 11451, Saudi Arabia
[3] Univ Tunis El Manar, Lab Analyse Mathemat & Applicat LR11ES11, Fac Sci Tunis, Tunis 2092, Tunisia
关键词
orthogonal polynomials; difference-differential operator; supersymmetry; DEFORMED HEISENBERG ALGEBRA; POWER;
D O I
10.3390/math8020193
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a realization of fractional supersymmetry quantum mechanics of order r, where the Hamiltonian and the supercharges involve the fractional Dunkl transform as a Klein type operator. We construct several classes of functions satisfying certain orthogonality relations. These functions can be expressed in terms of the associated Laguerre orthogonal polynomials and have shown that their zeros are the eigenvalues of the Hermitian supercharge. We call them the supersymmetric generalized Hermite polynomials.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Fractional supersymmetric quantum mechanics and lacunary Hermite polynomials
    F. Bouzeffour
    M. Garayev
    Analysis and Mathematical Physics, 2021, 11
  • [2] Fractional supersymmetric quantum mechanics and lacunary Hermite polynomials
    Bouzeffour, F.
    Garayev, M.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (01)
  • [3] Generalized Hermite polynomials in superspace as eigenfunctions of the supersymmetric rational CMS model
    Desrosiers, P
    Lapointe, L
    Mathieu, P
    NUCLEAR PHYSICS B, 2003, 674 (03) : 615 - 633
  • [4] Numerical solution for fractional optimal control problems by Hermite polynomials
    Yari, Ayatollah
    JOURNAL OF VIBRATION AND CONTROL, 2020, 27 (5-6) : 698 - 716
  • [5] Analysis of Fractional Order Polynomials Using Hermite-Biehler Theorem
    Senol, Bilal
    Yeroglu, Celaleddin
    Tan, Nusret
    2014 INTERNATIONAL CONFERENCE ON FRACTIONAL DIFFERENTIATION AND ITS APPLICATIONS (ICFDA), 2014,
  • [6] Hermite Polynomials in The Fractional Order Domain Suitable for Special Filters Design
    AbdelAty, Amr M.
    Soltan, Ahmed
    Ahmed, Waleed A.
    Radwan, Ahmed G.
    2016 13TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING/ELECTRONICS, COMPUTER, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY (ECTI-CON), 2016,
  • [7] Hermite polynomials
    Fisk, S
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2000, 91 (1-2) : 334 - 336
  • [8] Louck Polynomials and Hermite Polynomials
    Yang, Lingling
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION (ICMS2009), VOL 2, 2009, : 178 - 181
  • [9] ON HERMITE-HERMITE MATRIX POLYNOMIALS
    Metwally, M. S.
    Mohamed, M. T.
    Shehata, A.
    MATHEMATICA BOHEMICA, 2008, 133 (04): : 421 - 434
  • [10] Operational matrix for multi-order fractional differential equations with hermite polynomials
    Yalman Kosunalp, Hatice
    Gulsu, Mustafa
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2024, 42 (04): : 1050 - 1057