Unbounded knapsack problems with arithmetic weight sequences

被引:4
|
作者
Deineko, Vladimir G. [2 ]
Woeginger, Gerhard J. [1 ]
机构
[1] Tech Univ Eindhoven, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
[2] Univ Warwick, Warwick Business Sch, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Combinatorial optimization; Computational complexity; Dynamic programming; Polynomially solvable special case; VARIABLES; ALGORITHM;
D O I
10.1016/j.ejor.2011.03.028
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We investigate a special case of the unbounded knapsack problem in which the item weights form an arithmetic sequence. We derive a polynomial time algorithm for this special case with running time O(n(8)), where n denotes the number of distinct items in the instance. Furthermore, we extend our approach to a slightly more general class of knapsack instances. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:384 / 387
页数:4
相关论文
共 50 条
  • [31] ARITHMETIC PROGRESSIONS IN SEQUENCES
    CHOI, SLG
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1975, 10 (AUG): : 427 - 430
  • [32] Solving Unbounded Knapsack Problem Based on Quantum Genetic Algorithms
    Chen, Rung-Ching
    Huang, Yun-Hou
    Lin, Ming-Hsien
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, PT I, PROCEEDINGS, 2010, 5990 : 339 - 349
  • [33] Knapsack problems - An overview of recent advances. Part I: Single knapsack problems
    Cacchiani, Valentina
    Iori, Manuel
    Locatelli, Alberto
    Martello, Silvano
    COMPUTERS & OPERATIONS RESEARCH, 2022, 143
  • [34] A NOTE ON TRANSFORMS OF UNBOUNDED SEQUENCES
    ERDOS, P
    PIRANIAN, G
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1947, 53 (08) : 787 - 790
  • [35] UKP5: A New Algorithm for the Unbounded Knapsack Problem
    Becker, Henrique
    Buriol, Luciana S.
    EXPERIMENTAL ALGORITHMS, SEA 2016, 2016, 9685 : 50 - 62
  • [36] MATRIX SUMMABILITY OF UNBOUNDED SEQUENCES
    DEFRANZA, J
    ZELLER, K
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 115 (01) : 171 - 175
  • [37] CONVERGENCE OF UNBOUNDED SEQUENCES OF SEMIGROUPS
    HUGHES, RJ
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1977, 16 (DEC): : 517 - 528
  • [38] Gompertz PSO variants for Knapsack and Multi-Knapsack Problems
    Pinkey Chauhan
    Millie Pant
    Kusum Deep
    Applied Mathematics-A Journal of Chinese Universities, 2021, 36 : 611 - 630
  • [39] Gompertz PSO variants for Knapsack and Multi-Knapsack Problems
    Chauhan, Pinkey
    Pant, Millie
    Deep, Kusum
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2021, 36 (04) : 611 - 630
  • [40] Gompertz PSO variants for Knapsack and Multi-Knapsack Problems
    Pinkey Chauhan
    Millie Pant
    Kusum Deep
    AppliedMathematics:AJournalofChineseUniversities, 2021, 36 (04) : 611 - 630