A Convex Approach to Stochastic Optimal Control Using Linear Operators

被引:0
|
作者
Vaidya, Umesh [1 ]
Huang, Bowen [1 ]
机构
[1] Clemson Univ, Dept Mech Engn, Clemson, SC 29634 USA
基金
美国国家科学基金会;
关键词
DUALITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper is about the optimal control of a stochastic dynamical system. We provide a convex formulation to the optimal control problem involving a stochastic dynamical system. The convex formulation is made possible by writing the stochastic optimal control problem in the dual space of densities involving the Fokker-Planck or Perron-Frobenius generator for a stochastic system. The convex formulation leads to an infinite-dimensional convex optimization problem for optimal control. We exploit Koopman and Perron-Frobenius generators' duality for the stochastic system to construct the finite-dimensional approximation of the infinite-dimensional convex problem. We present simulation results to demonstrate the application of the developed framework.
引用
收藏
页码:1306 / 1311
页数:6
相关论文
共 50 条
  • [1] Data-driven optimal control via linear transfer operators: A convex approach
    Moyalan, Joseph
    Choi, Hyungjin
    Chen, Yongxin
    Vaidya, Umesh
    [J]. AUTOMATICA, 2023, 150
  • [2] LINEAR CONVEX STOCHASTIC OPTIMAL CONTROL WITH APPLICATIONS IN PRODUCTION PLANNING
    KLEINDORFER, PR
    GLOVER, K
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1973, AC18 (01) : 56 - 59
  • [3] A Convex Optimization Approach to Chance-Constrained Linear Stochastic Drift Counteraction Optimal Control
    Tang, Sunbochen
    Li, Nan
    Kolmanovsky, Ilya
    Zidek, Robert
    [J]. 2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 898 - 903
  • [4] Stochastic Optimal Control and Linear Programming Approach
    Buckdahn, R.
    Goreac, D.
    Quincampoix, M.
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2011, 63 (02): : 257 - 276
  • [5] Stochastic Optimal Control and Linear Programming Approach
    R. Buckdahn
    D. Goreac
    M. Quincampoix
    [J]. Applied Mathematics & Optimization, 2011, 63 : 257 - 276
  • [6] SEQUENTIAL CONVEX PROGRAMMING FOR NON-LINEAR STOCHASTIC OPTIMAL CONTROL
    Bonalli, Riccardo
    Lew, Thomas
    Pavone, Marco
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2022, 28
  • [7] Data-Driven Stochastic Optimal Control With Safety Constraints Using Linear Transfer Operators
    Vaidya, Umesh
    Tellez-Castro, Duvan
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (04) : 2100 - 2115
  • [8] THE STOCHASTIC MAXIMUM PRINCIPLE FOR LINEAR, CONVEX OPTIMAL-CONTROL WITH RANDOM-COEFFICIENTS
    CADENILLAS, A
    KARATZAS, I
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1995, 33 (02) : 590 - 624
  • [9] CONJUGATE CONVEX FUNCTIONS IN OPTIMAL STOCHASTIC CONTROL
    BISMUT, JM
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1973, 44 (02) : 384 - 404
  • [10] Initial condition of costate in linear optimal control using convex analysis
    Liu, Bin
    [J]. AUTOMATICA, 2011, 47 (04) : 748 - 753