SEQUENTIAL CONVEX PROGRAMMING FOR NON-LINEAR STOCHASTIC OPTIMAL CONTROL

被引:2
|
作者
Bonalli, Riccardo [1 ]
Lew, Thomas [2 ]
Pavone, Marco [2 ]
机构
[1] Univ Paris Saclay, CNRS, Cent Supelec, Lab Signaux & Syst, F-91190 Gif Sur Yvette, France
[2] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Nonlinear stochastic optimal controlsequential convex programmingconvergence of Pontryagin extremal snumerical deterministic reformulation; NUMERICAL-METHODS; MAXIMUM PRINCIPLE; EQUATIONS; SYSTEMS; STATE;
D O I
10.1051/cocv/2022060
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work introduces a sequential convex programming framework for non-linear, finitedimensional stochastic optimal control, where uncertainties are modeled by a multidimensional Wiener process. We prove that any accumulation point of the sequence of iterates generated by sequential convex programming is a candidate locally-optimal solution for the original problem in the sense of the stochastic Pontryagin Maximum Principle. Moreover, we provide sufficient conditions for the existence of at least one such accumulation point. We then leverage these properties to design a practical numerical method for solving non-linear stochastic optimal control problems based on a deterministic transcription of stochastic sequential convex programming.
引用
收藏
页数:34
相关论文
共 50 条
  • [1] Sequential hierarchical least-squares programming for prioritized non-linear optimal control
    Pfeiffer, Kai
    Kheddar, Abderrahmane
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2024,
  • [2] EXISTENCE OF MEASURABLE OPTIMA IN STOCHASTIC NON-LINEAR PROGRAMMING AND CONTROL
    ENGL, HW
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 1979, 5 (04): : 271 - 281
  • [3] Penalty boundary sequential convex programming algorithm for non-convex optimal control problems
    Zhang, Zhe
    Jin, Gumin
    Li, Jianxun
    [J]. ISA TRANSACTIONS, 2018, 72 : 229 - 244
  • [4] SOME PROBLEMS OF NON-LINEAR STOCHASTIC PROGRAMMING
    IOFFE, AD
    YUDIN, DB
    [J]. DOKLADY AKADEMII NAUK SSSR, 1969, 186 (01): : 16 - &
  • [5] Stochastic Dynamic Programming with Non-linear Discounting
    Nicole Bäuerle
    Anna Jaśkiewicz
    Andrzej S. Nowak
    [J]. Applied Mathematics & Optimization, 2021, 84 : 2819 - 2848
  • [6] Stochastic Dynamic Programming with Non-linear Discounting
    Baeuerle, Nicole
    Jaskiewicz, Anna
    Nowak, Andrzej S.
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (03): : 2819 - 2848
  • [7] Stochastic Optimal Control and Linear Programming Approach
    R. Buckdahn
    D. Goreac
    M. Quincampoix
    [J]. Applied Mathematics & Optimization, 2011, 63 : 257 - 276
  • [8] Stochastic Optimal Control and Linear Programming Approach
    Buckdahn, R.
    Goreac, D.
    Quincampoix, M.
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2011, 63 (02): : 257 - 276
  • [9] OPTIMAL-CONTROL OF A CLASS OF NON-LINEAR STOCHASTIC-SYSTEMS
    MOHLER, RR
    KOLODZIEJ, WJ
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1981, 26 (05) : 1048 - 1054
  • [10] Non-linear stochastic optimal control of acceleration parametrically excited systems
    Wang, Yong
    Jin, Xiaoling
    Huang, Zhilong
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2016, 47 (03) : 561 - 571