Coloring powers of chordal graphs

被引:28
|
作者
Král', D [1 ]
机构
[1] Charles Univ Prague, Inst Theoret Comp Sci ITI, CR-11800 Prague, Czech Republic
关键词
chordal graphs; graph powers; graph coloring; L(p; q)-labeling;
D O I
10.1137/S0895480103424079
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the kth power G(k) of a chordal graph G with maximum degree Delta is O(root k Delta((k+1)/2))-degenerate for even values of k and O(Delta((k+1)/2))-degenerate for odd values. In particular, this bounds the chromatic number.( Gk) of the kth power of G. The bound proven for odd values of k is the best possible. Another consequence is the bound lambda(p,q)(G) <= [(Delta+1)(3/2)/root(6)] (2q - 1 + Delta(2p - 1) on the least possible span lambda(p,q)(G) of an L(p,q)-labeling for chordal graphs G with maximum degree.. On the other hand, a construction of such graphs with lambda(p,q)(G) >= Omega(Delta(3/2)q+Delta p) is found.
引用
收藏
页码:451 / 461
页数:11
相关论文
共 50 条
  • [21] 2-Tone coloring of chordal and outerplanar graphs
    Bickle, Allan
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2023, 87 : 182 - 197
  • [22] Acyclic Edge Coloring of Chordal Graphs with Bounded Degree
    Yulai Ma
    Yongtang Shi
    Weifan Wang
    Graphs and Combinatorics, 2021, 37 : 2621 - 2636
  • [23] Acyclic Edge Coloring of Chordal Graphs with Bounded Degree
    Ma, Yulai
    Shi, Yongtang
    Wang, Weifan
    GRAPHS AND COMBINATORICS, 2021, 37 (06) : 2621 - 2636
  • [24] On L(2,1)-coloring split, chordal bipartite, and weakly chordal graphs
    Cerioli, Marcia R.
    Posner, Daniel F. D.
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (18) : 2655 - 2661
  • [25] Regularity of symbolic powers of edge ideals of chordal graphs
    Fakhari, S. A. Seyed
    KYOTO JOURNAL OF MATHEMATICS, 2022, 62 (04) : 753 - 762
  • [26] Recognizing powers of proper interval, split, and chordal graphs
    Lau, LC
    Corneil, DG
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2004, 18 (01) : 83 - 102
  • [27] Approximations for Aligned Coloring and Spillage Minimization in Interval and Chordal Graphs
    Carroll, Douglas E.
    Meyerson, Adam
    Tagiku, Brian
    APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, 2009, 5687 : 29 - +
  • [28] Total Coloring of Planar Graphs Without Chordal Short Cycles
    Huijuan Wang
    Bin Liu
    Jianliang Wu
    Graphs and Combinatorics, 2015, 31 : 1755 - 1764
  • [29] Total Coloring of Planar Graphs Without Chordal Short Cycles
    Wang, Huijuan
    Liu, Bin
    Wu, Jianliang
    GRAPHS AND COMBINATORICS, 2015, 31 (05) : 1755 - 1764
  • [30] A note on list-coloring powers of graphs
    Kosar, Nicholas
    Petrickova, Sarka
    Reiniger, Benjamin
    Yeager, Elyse
    DISCRETE MATHEMATICS, 2014, 332 : 10 - 14