Coloring powers of chordal graphs

被引:28
|
作者
Král', D [1 ]
机构
[1] Charles Univ Prague, Inst Theoret Comp Sci ITI, CR-11800 Prague, Czech Republic
关键词
chordal graphs; graph powers; graph coloring; L(p; q)-labeling;
D O I
10.1137/S0895480103424079
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the kth power G(k) of a chordal graph G with maximum degree Delta is O(root k Delta((k+1)/2))-degenerate for even values of k and O(Delta((k+1)/2))-degenerate for odd values. In particular, this bounds the chromatic number.( Gk) of the kth power of G. The bound proven for odd values of k is the best possible. Another consequence is the bound lambda(p,q)(G) <= [(Delta+1)(3/2)/root(6)] (2q - 1 + Delta(2p - 1) on the least possible span lambda(p,q)(G) of an L(p,q)-labeling for chordal graphs G with maximum degree.. On the other hand, a construction of such graphs with lambda(p,q)(G) >= Omega(Delta(3/2)q+Delta p) is found.
引用
收藏
页码:451 / 461
页数:11
相关论文
共 50 条
  • [1] POWERS OF CHORDAL GRAPHS
    BALAKRISHNAN, R
    PAULRAJA, P
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1983, 35 (OCT): : 211 - 217
  • [2] ON POWERS AND CENTERS OF CHORDAL GRAPHS
    LASKAR, R
    SHIER, D
    DISCRETE APPLIED MATHEMATICS, 1983, 6 (02) : 139 - 147
  • [4] Parameterized coloring problems on chordal graphs
    Marx, D
    THEORETICAL COMPUTER SCIENCE, 2006, 351 (03) : 407 - 424
  • [5] Injective coloring of subclasses of chordal graphs
    Panda, B. S.
    Ghosh, Rumki
    THEORETICAL COMPUTER SCIENCE, 2025, 1023
  • [6] Parameterized coloring problems on chordal graphs
    Marx, D
    PARAMETERIZED AND EXACT COMPUTATION, PROCEEDINGS, 2004, 3162 : 83 - 95
  • [7] On partial Grundy coloring of bipartite graphs and chordal graphs
    Panda, B. S.
    Verma, Shaily
    DISCRETE APPLIED MATHEMATICS, 2019, 271 : 171 - 183
  • [8] Approximating interval coloring and max-coloring in chordal graphs
    Pemmaraju, SV
    Penumatcha, S
    Raman, R
    EXPERIMENTAL AND EFFICIENT ALGORITHMS, 2004, 3059 : 399 - 416
  • [9] On Strongly Chordal Graphs That Are Not Leaf Powers
    Lafond, Manuel
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE (WG 2017), 2017, 10520 : 386 - 398
  • [10] Approximating interval coloring and max-coloring in chordal graphs
    Pemmaraju, Sriram V.
    Penumatcha, Sriram
    Raman, Rajiv
    Lect. Notes Comput. Sci., 1600, (399-416):