Assembling Magnetic Nanoparticles on Nanomechanical Resonators for Torque Magnetometry

被引:1
|
作者
Firdous, Tayyaba [1 ,2 ]
Potter, David K. [1 ]
机构
[1] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada
[2] Natl Res Council Canada, 11421 Saskatchewan Dr NW, Edmonton, AB T6G 2M9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
self-assembly; magnetic nanoparticles; superparamagnetic; stable single domain particles; nanomechanical resonators; torque magnetometry; FABRICATION; PATTERNS;
D O I
10.3390/ijms21030984
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We report a highly compliant process for patterning nanoparticle arrays on micro- and nanomechanical devices. The distinctive step involves the single layer self-assembled nanoparticles on top of released nanomechanical devices. We demonstrate the process by fabricating sizable arrays of nanomechanical devices on silicon-on-insulator substrates, acting as nanomechanical torque magnetometers. Later, the nanoparticles were self-assembled in geometrical shapes on top of the devices by a unique combination of top-down and bottom-up methods. The self-assembled array of nanoparticles successfully showed a magnetic torque signal by magnetic actuation of the magnetometer. This patterning process can be generalized for any shape and for a wide range of nanoparticles on the nanomechanical resonators.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Microwave amplification with nanomechanical resonators
    F. Massel
    T. T. Heikkilä
    J.-M. Pirkkalainen
    S. U. Cho
    H. Saloniemi
    P. J. Hakonen
    M. A. Sillanpää
    Nature, 2011, 480 : 351 - 354
  • [42] Nanomechanical Resonators for Cryogenic Research
    Kamppinen, T.
    Eltsov, V. B.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2019, 196 (1-2) : 283 - 292
  • [43] Microelectromagnetic matrix for local assembling of magnetic nanoparticles
    Luby, S.
    Chitu, L.
    Majkova, E.
    Senderak, R.
    Kostic, I.
    Hrkut, P.
    Matay, L.
    Hascik, S.
    Lalinsky, T.
    Capek, I.
    Satka, A.
    ASDAM '06: SIXTH INTERNATIONAL CONFERENCE ON ADVANCED SEMICONDUCTOR DEVICES AND MICROSYSTEMS, CONFERENCE PROCEEDINGS, 2006, : 7 - 10
  • [44] CHARACTERIZATION OF YBCO FILMS BY TORQUE MAGNETOMETRY
    ANDRA, W
    BETZ, J
    BRUNNER, B
    HERGT, R
    LENGFELLNER, H
    RENK, KF
    STEENBECK, K
    PHYSICA C, 1991, 180 (1-4): : 188 - 191
  • [45] Magnetic Torque Evaluation for Magnetized Nanoparticles
    Ionita, Valentin
    Ioan, Daniel
    APPLIED ELECTROMAGNETIC ENGINEERING FOR MAGNETIC, SUPERCONDUCTING AND NANOMATERIALS, 2011, 670 : 103 - 109
  • [46] Novel sensor design for torque magnetometry
    Kohout, Stefan
    Roos, Josef
    Keller, Hugo
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (01):
  • [47] Piezoresistive cantilever designed for torque magnetometry
    Willemin, M
    Rossel, C
    Brugger, J
    Despont, MH
    Rothuizen, H
    Vettiger, P
    Hofer, J
    Keller, H
    JOURNAL OF APPLIED PHYSICS, 1998, 83 (03) : 1163 - 1170
  • [48] PRECIPITATE SOLUTION KINETICS BY TORQUE MAGNETOMETRY
    ROLLASON, TC
    MARTIN, JW
    JOURNAL OF THE INSTITUTE OF METALS, 1970, 98 : 127 - &
  • [49] MAGNETIC-ANISOTROPY OF RE/TM FILMS MEASURED LOCALLY BY KERR TORQUE MAGNETOMETRY
    ROHRMANN, H
    KRATZER, M
    ROLL, K
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1995, 148 (1-2) : 136 - 138
  • [50] Direct measurement of DNA bending by quantum magnetic imaging of a nanomechanical torque balance
    Kazi, Zeeshawn
    Shelby, Isaac M.
    Nirodi, Ruhee
    Turnbull, Joseph
    Watanabe, Hideyuki
    Itoh, Kohei M.
    Wiggins, Paul A.
    Fu, Kai-Mei C.
    PHYSICAL REVIEW APPLIED, 2024, 22 (06):