Reducing bias to source samples for unsupervised domain adaptation

被引:12
|
作者
Ye, Yalan [1 ]
Huang, Ziwei [1 ]
Pan, Tongjie [1 ]
Li, Jingjing [1 ]
Shen, Heng Tao [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu, Peoples R China
关键词
Domain adaptation; Transfer learning; Generative adversarial network;
D O I
10.1016/j.neunet.2021.03.021
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised Domain Adaptation (UDA) makes predictions for the target domain data while labels are only available in the source domain. Lots of works in UDA focus on finding a common representation of the two domains via domain alignment, assuming that a classifier trained in the source domain can be generalized well to the target domain. Thus, most existing UDA methods only consider minimizing the domain discrepancy without enforcing any constraint on the classifier. However, due to the uniqueness of each domain, it is difficult to achieve a perfect common representation, especially when there is low similarity between the source domain and the target domain. As a consequence, the classifier is biased to the source domain features and makes incorrect predictions on the target domain. To address this issue, we propose a novel approach named reducing bias to source samples for unsupervised domain adaptation (RBDA) by jointly matching the distribution of the two domains and reducing the classifier's bias to source samples. Specifically, RBDA first conditions the adversarial networks with the cross-covariance of learned features and classifier predictions to match the distribution of two domains. Then to reduce the classifier's bias to source samples, RBDA is designed with three effective mechanisms: a mean teacher model to guide the training of the original model, a regularization term to regularize the model and an improved cross-entropy loss for better supervised information learning. Comprehensive experiments on several open benchmarks demonstrate that RBDA achieves state-of-the-art results, which show its effectiveness for unsupervised domain adaptation scenarios. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页码:61 / 71
页数:11
相关论文
共 50 条
  • [21] Unsupervised Domain Adaptation Based on Source-Guided Discrepancy
    Kuroki, Seiichi
    Charoenphakdee, Nontawat
    Bao, Han
    Honda, Junya
    Sato, Issei
    Sugiyama, Masashi
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 4122 - 4129
  • [22] Hierarchical Unsupervised Relation Distillation for Source Free Domain Adaptation
    Xing, Bowei
    Xie, Xianghua
    Wang, Ruibin
    Guo, Ruohao
    Shi, Ji
    Yue, Wenzhen
    COMPUTER VISION - ECCV 2024, PT L, 2025, 15108 : 393 - 409
  • [23] Multi-Source Unsupervised Domain Adaptation with Prototype Aggregation
    Huang, Min
    Xie, Zifeng
    Sun, Bo
    Wang, Ning
    MATHEMATICS, 2025, 13 (04)
  • [24] Multi-source unsupervised domain adaptation for object detection
    Zhang, Dan
    Ye, Mao
    Liu, Yiguang
    Xiong, Lin
    Zhou, Lihua
    INFORMATION FUSION, 2022, 78 : 138 - 148
  • [25] Evidential Multi-Source-Free Unsupervised Domain Adaptation
    Pei, Jiangbo
    Men, Aidong
    Liu, Yang
    Zhuang, Xiahai
    Chen, Qingchao
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (08) : 5288 - 5305
  • [26] Confidence Score for Source-Free Unsupervised Domain Adaptation
    Lee, Jonghyun
    Jung, Dahuin
    Yim, Junho
    Yoon, Sungroh
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [27] Multi-Source Unsupervised Domain Adaptation via Pseudo Target Domain
    Ren, Chuan-Xian
    Liu, Yong-Hui
    Zhang, Xi-Wen
    Huang, Ke-Kun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 2122 - 2135
  • [28] Unsupervised Multi-source Domain Adaptation Without Access to Source Data
    Ahmed, Sk Miraj
    Raychaudhuri, Dripta S.
    Paul, Sujoy
    Oymak, Samet
    Roy-Chowdhury, Amit K.
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 10098 - 10107
  • [29] Reducing bi-level feature redundancy for unsupervised domain adaptation
    Wang, Mengzhu
    Wang, Shanshan
    Wang, Wei
    Shen, Li
    Zhang, Xiang
    Lan, Long
    Luo, Zhigang
    PATTERN RECOGNITION, 2023, 137
  • [30] Deep Joint Semantic Adaptation Network for Multi-source Unsupervised Domain Adaptation
    Cheng, Zhiming
    Wang, Shuai
    Yang, Defu
    Qi, Jie
    Xiao, Mang
    Yan, Chenggang
    PATTERN RECOGNITION, 2024, 151