Reduced Calibration Strategy Using a Basketball for RGB-D Cameras

被引:2
|
作者
Roman-Rivera, Luis-Rogelio [1 ]
Sotelo-Rodriguez, Israel [1 ]
Carlos Pedraza-Ortega, Jesus [1 ]
Antonio Aceves-Fernandez, Marco [1 ]
Manuel Ramos-Arreguin, Juan [1 ]
Gorrostieta-Hurtado, Efren [1 ]
机构
[1] Univ Autonoma Queretaro, Fac Ingn, Cerro Campanas S-N, Queretaro 76010, Mexico
关键词
RGB-D camera; RGB-D camera calibration; spherical object; 3D reconstruction; sphere detection; DEPTH;
D O I
10.3390/math10122085
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
RGB-D cameras produce depth and color information commonly used in the 3D reconstruction and vision computer areas. Different cameras with the same model usually produce images with different calibration errors. The color and depth layer usually requires calibration to minimize alignment errors, adjust precision, and improve data quality in general. Standard calibration protocols for RGB-D cameras require a controlled environment to allow operators to take many RGB and depth pair images as an input for calibration frameworks making the calibration protocol challenging to implement without ideal conditions and the operator experience. In this work, we proposed a novel strategy that simplifies the calibration protocol by requiring fewer images than other methods. Our strategy uses an ordinary object, a know-size basketball, as a ground truth sphere geometry during the calibration. Our experiments show comparable results requiring fewer images and non-ideal scene conditions than a reference method to align color and depth image layers.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] People detection and tracking using RGB-D cameras for mobile robots
    Liu, Hengli
    Luo, Jun
    Wu, Peng
    Xie, Shaorong
    Li, Hengyu
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2016, 13 : 1 - 11
  • [42] Visual Odometry Using Non-Overlapping RGB-D Cameras
    Xu, Hang
    Guo, Yanning
    Feng, Zhen
    Chen, Zhen
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 843 - 848
  • [43] Online semantic mapping of logistic environments using RGB-D cameras
    Himstedt, Marian
    Maehle, Erik
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2017, 14 (04): : 1 - 13
  • [44] Experimental Study of Odometry Estimation Methods using RGB-D Cameras
    Fang, Zheng
    Scherer, Sebastian
    2014 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2014), 2014, : 680 - 687
  • [45] Construction of Roadmaps for Mobile Robots' Navigation Using RGB-D Cameras
    Savage, Jesus
    Contreras, Luis
    Figueroa, Israel
    Pacheco, Abel
    Bermudez, Alejandro
    Negrete, Marco
    Matamoros, Mauricio
    Rivera, Carlos
    INTELLIGENT AUTONOMOUS SYSTEMS 13, 2016, 302 : 217 - 229
  • [46] Online action recognition from RGB-D cameras based on reduced basis decomposition
    Muniandi Arunraj
    Andy Srinivasan
    A. Vimala Juliet
    Journal of Real-Time Image Processing, 2020, 17 : 341 - 356
  • [47] Online action recognition from RGB-D cameras based on reduced basis decomposition
    Arunraj, Muniandi
    Srinivasan, Andy
    Juliet, A. Vimala
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2020, 17 (02) : 341 - 356
  • [48] Kinematic Calibration of Robot Manipulator using RGB-D Camera
    Jang W.B.
    Lee J.
    Park S.H.
    Chung S.Y.
    Jin M.
    Hwang M.J.
    Journal of Institute of Control, Robotics and Systems, 2023, 29 (03) : 264 - 271
  • [49] 3D Reconstruction with Mirrors and RGB-D Cameras
    Akay, Abdullah
    Akgul, Yusuf Sinan
    PROCEEDINGS OF THE 2014 9TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, THEORY AND APPLICATIONS (VISAPP 2014), VOL 3, 2014, : 325 - 334
  • [50] Structure Selective Depth Superresolution for RGB-D Cameras
    Kim, Youngjung
    Ham, Bumsub
    Oh, Changjae
    Sohn, Kwanghoon
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (11) : 5227 - 5238