Reduced Calibration Strategy Using a Basketball for RGB-D Cameras

被引:2
|
作者
Roman-Rivera, Luis-Rogelio [1 ]
Sotelo-Rodriguez, Israel [1 ]
Carlos Pedraza-Ortega, Jesus [1 ]
Antonio Aceves-Fernandez, Marco [1 ]
Manuel Ramos-Arreguin, Juan [1 ]
Gorrostieta-Hurtado, Efren [1 ]
机构
[1] Univ Autonoma Queretaro, Fac Ingn, Cerro Campanas S-N, Queretaro 76010, Mexico
关键词
RGB-D camera; RGB-D camera calibration; spherical object; 3D reconstruction; sphere detection; DEPTH;
D O I
10.3390/math10122085
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
RGB-D cameras produce depth and color information commonly used in the 3D reconstruction and vision computer areas. Different cameras with the same model usually produce images with different calibration errors. The color and depth layer usually requires calibration to minimize alignment errors, adjust precision, and improve data quality in general. Standard calibration protocols for RGB-D cameras require a controlled environment to allow operators to take many RGB and depth pair images as an input for calibration frameworks making the calibration protocol challenging to implement without ideal conditions and the operator experience. In this work, we proposed a novel strategy that simplifies the calibration protocol by requiring fewer images than other methods. Our strategy uses an ordinary object, a know-size basketball, as a ground truth sphere geometry during the calibration. Our experiments show comparable results requiring fewer images and non-ideal scene conditions than a reference method to align color and depth image layers.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Approach for accurate calibration of RGB-D cameras using spheres
    Liu, Hongyan
    Qu, Daokui
    Xu, Fang
    Zou, Fengshan
    Song, Jilai
    Jia, Kai
    OPTICS EXPRESS, 2020, 28 (13): : 19058 - 19073
  • [2] Practical and accurate calibration of RGB-D cameras using spheres
    Staranowicz, Aaron N.
    Brown, Garrett R.
    Morbidi, Fabio
    Mariottini, Gian-Luca
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2015, 137 : 102 - 114
  • [3] Online Depth Calibration for RGB-D Cameras using Visual SLAM
    Quenzel, Jan
    Rosu, Radu Alexandru
    Houben, Sebastian
    Behnke, Sven
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 2227 - 2234
  • [4] Robust Intrinsic and Extrinsic Calibration of RGB-D Cameras
    Basso, Filippo
    Menegatti, Emanuele
    Pretto, Alberto
    IEEE TRANSACTIONS ON ROBOTICS, 2018, 34 (05) : 1315 - 1332
  • [5] Robust alternating optimisation for extrinsic calibration of RGB-D cameras
    Jang, J. W.
    Kwon, Y. C.
    Hwang, W.
    Choi, O.
    ELECTRONICS LETTERS, 2019, 55 (18) : 992 - 994
  • [6] A Novel Method for Automatic Extrinsic Parameter Calibration of RGB-D Cameras
    Shi, Qin
    Song, Huansheng
    Sun, Shijie
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021
  • [7] Extrinsic Calibration of Multiple RGB-D Cameras From Line Observations
    Perez-Yus, Alejandro
    Fernandez-Moral, Eduardo
    Lopez-Nicolas, Gonzalo
    Guerrero, Jose J.
    Rives, Patrick
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2018, 3 (01): : 273 - 280
  • [8] Adaptive Visual Odometry Using RGB-D Cameras
    Fabian, Joshua R.
    Clayton, Garrett M.
    2014 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2014, : 1533 - 1538
  • [9] Visual SLAM using Multiple RGB-D Cameras
    Yang, Shaowu
    Yi, Xiaodong
    Wang, Zhiyuan
    Wang, Yanzhen
    Yang, Xuejun
    2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2015, : 1389 - 1395
  • [10] VIRTUAL VIEW SYNTHESIS USING RGB-D CAMERAS
    Chien, Chun-Liang
    Lee, Tzu-Chin
    Hang, Hsueh-Ming
    2016 3DTV-CONFERENCE: THE TRUE VISION - CAPTURE, TRANSMISSION AND DISPLAY OF 3D VIDEO (3DTV-CON), 2016,