Coral-Like Hierarchical Nanostructured ZnMn2O4/Mn2O3 Composites Synthesized by Zinc-Absent Method as a High-Performance Cathode Material for Aqueous Zinc-Ion Batteries

被引:6
|
作者
Cai, Kexing [1 ]
Luo, Shao-Hua [1 ,2 ,3 ,4 ]
Cong, Jun [1 ]
Li, Kun [1 ]
Yan, Sheng-xue [1 ]
Hou, Peng-qing [3 ,5 ]
Wang, Qing [1 ,2 ,3 ,4 ]
Zhang, Yahui [1 ,2 ,3 ,4 ]
Liu, Xin [1 ,2 ,3 ,4 ]
机构
[1] Northeastern Univ, Sch Mat Sci & Engn, Shenyang 110819, Peoples R China
[2] Northeastern Univ, State Key Lab Rolling & Automat, Shenyang 110819, Peoples R China
[3] Northeastern Univ Qinhuangdao, Sch Resources & Mat, Qinhuangdao 066004, Hebei, Peoples R China
[4] Key Lab Dielect & Electrolyte Funct Mat Hebei Pro, Qinhuangdao, Hebei, Peoples R China
[5] Shenyang Univ Technol, Sch Mat Sci & Engn, Shenyang, Peoples R China
基金
中国国家自然科学基金;
关键词
SPINEL ZNMN2O4; MICROSPHERES;
D O I
10.1149/1945-7111/ac6f83
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
As one of the multivalent ion batteries, the zinc ion battery has the advantages of high-volume energy density and good safety. In this paper, coral-like and nanoparticle crosslinking hierarchical nanostructured ZnMn2O4/Mn2O3 composites were successfully synthesized as cathode materials for zinc ion batteries by a simple sol-gel combined with the zinc-absent method. ZnMn2O4/Mn2O3 composites with good properties were prepared when the zinc content was 10%. The prepared ZnMn2O4/Mn2O3 composites have the morphology of coral-like and nanoparticle crosslinking and uniform particle size distribution. Compared with pure ZnMn2O4 and Mn2O3, the composites show excellent electrochemical properties. Using 0.5 M Zn(CF3SO3)(2)-AN/H2O (8:2) as the electrolyte, the first discharge capacity of the material can reach 170.7 mAh.g(-1) at 0.05 C. After 150 cycles, the discharge capacity remained 109 mAh.g(-1). The kinetic characteristic of the electrode was studied by the galvanostatic intermittent titration technique, and the electrochemical reaction mechanism was studied by ex situ XRD. It was found that the two-phase recombination improved the diffusion rate of Zn2+. In the field of aqueous zinc ion batteries, an effective modification idea is provided for the research of spinel ZnMn2O4 cathode material with low specific capacity. (C) 2022 The Electrochemical Society ("ECS"). Published on behalf of ECS by IOP Publishing Limited.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Pulsed electro-synthesized tunable crystallite sizes ZnMn2O4/Mn2O3 nanocomposite as high-performance cathode material for aqueous zinc-ion batteries
    Saadi-motaallegh, Shabnam
    Javanbakht, Mehran
    Omidvar, Hamid
    Habibzadeh, Sajjad
    Journal of Alloys and Compounds, 2022, 914
  • [2] Pulsed electro-synthesized tunable crystallite sizes ZnMn2O4/Mn2O3 nanocomposite as high-performance cathode material for aqueous zinc-ion batteries
    Saadi-motaallegh, Shabnam
    Javanbakht, Mehran
    Omidvar, Hamid
    Habibzadeh, Sajjad
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 914
  • [3] Preparation of ZnMn2O4/Mn2O3/CNT composite cathode material and its application in aqueous zinc-ion batteries
    Zhou, Shihao
    Zhao, Caixian
    Zhang, Tao
    Long, Fengni
    Tang, Fang
    Wu, Xianwen
    Jingxi Huagong/Fine Chemicals, 2021, 38 (04): : 765 - 773
  • [4] The excellent electrochemical performances of ZnMn2O4/Mn2O3: The composite cathode material for potential aqueous zinc ion batteries
    Yang, Sinian
    Zhang, Manshu
    Wu, Xianwen
    Wu, Xiangsi
    Zeng, Fanghong
    Li, Yuting
    Duan, Shiye
    Fan, Dihua
    Yang, Yan
    Wu, Xianming
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 832 : 69 - 74
  • [5] High-performance zinc-ion batteries cathode material ZnMn2O4 modified by polypyrrole and reduced graphene oxide
    Gao, Haiyan
    Tan, Yi
    Wang, Shufei
    Sun, Liwen
    Jin, Jiasen
    Zhao, Yiming
    Zhao, Yongnan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 968
  • [6] Cerium-doped Mn2O3 microspheres: a high-performance cathode material for aqueous zinc-ion batteries
    Li, Xin
    Wang, Wenyu
    Li, Linwen
    Xue, Chengyu
    Chen, Yang
    Zhu, Tiantian
    Wei, Fuxiang
    Sui, Yanwei
    He, Jie
    Zhang, Zunyang
    NEW JOURNAL OF CHEMISTRY, 2025, 49 (07) : 2722 - 2729
  • [7] Suppressing side reactions in spinel ZnMn2O4 for high-performance aqueous zinc-ion batteries
    Qiu, Ce
    Huang, Heru
    Zhu, Xiaohui
    Xue, Liang
    Ni, Mingzhu
    Zhao, Yang
    Sun, Mingqing
    Wang, Tong
    Wu, Jun
    Xia, Hui
    ENERGY STORAGE MATERIALS, 2025, 75
  • [8] Ni2+-doped ZnMn2O4 with enhanced electrochemical performance as cathode material for aqueous zinc-ion batteries
    Qin, Liping
    Zhu, Qi
    Li, Lijun
    Cheng, Hao
    Li, Wentao
    Fang, Zhijie
    Mo, Man
    Chen, Shunfeng
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2023, 27 (03) : 773 - 784
  • [9] Ni2+-doped ZnMn2O4 with enhanced electrochemical performance as cathode material for aqueous zinc-ion batteries
    Liping Qin
    Qi Zhu
    Lijun Li
    Hao Cheng
    Wentao Li
    Zhijie Fang
    Man Mo
    Shunfeng Chen
    Journal of Solid State Electrochemistry, 2023, 27 : 773 - 784
  • [10] Improved electrochemical performance of ZnMn2O4/CuO composite as cathode materials for aqueous zinc-ion batteries
    Liping Qin
    Qi Zhu
    Lijun Li
    Guozhao Fang
    Shijia Li
    Hao Cheng
    Weimin Guo
    Hailin Gao
    Ionics, 2021, 27 : 4783 - 4792