A multi-level finite element nodal ordering using algebraic graph theory

被引:0
|
作者
Kaveh, A [1 ]
Bondarabady, HAR [1 ]
机构
[1] Iran Univ Sci & Technol, Dept Civil Engn, Tehran, Iran
关键词
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this paper an efficient method is developed for nodal and element ordering of structures and finite element models. The present method is based on concepts from algebraic graph theory and comprises an efficient algorithm for calculating the Fiedler vector of the Laplacian matrix of a graph. The problem of finding the second eigenvalue of the Laplacian matrix is transformed into evaluating the maximal eigenvalue of the complementary Laplacian matrix. An iterative method is then employed to form the eigenvector needed for renumbering the vertices-of a graph. An appropriate transformation, maps the vertex ordering of graphs into nodal and element ordering of the finite element models. In order to increase the efficiency of the algebraic graph theoretical method a multi-level scheme is adopted in which the graph model corresponding to a finite element mesh is coarsened in various levels to reduce the size of the problem. Then an efficient algebraic method is applied and with an uncoarsening process, the final ordering of the graph and. hence that of the corresponding finite element model is obtained.
引用
收藏
页码:35 / 42
页数:4
相关论文
共 50 条
  • [21] Improving quality of graph partitioning using multi-level optimization
    Pastukhov, R. K.
    Korshunov, A. V.
    Turdakov, D. Yu.
    Kuznetsov, S. D.
    PROGRAMMING AND COMPUTER SOFTWARE, 2015, 41 (05) : 302 - 306
  • [22] Multi-level graph contrastive learning
    Shao, Pengpeng
    Tao, Jianhua
    NEUROCOMPUTING, 2024, 570
  • [23] Multi-level graph layout on the GPU
    Frishman, Yaniv
    Tal, Ayellet
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2007, 13 (06) : 1310 - 1317
  • [24] MULTI-LEVEL BLOCK ITERATIVE METHOD FOR MIXED FINITE STRIP/FINITE ELEMENT ANALYSIS.
    Graves Smith, T.R.
    Gierlinski, J.T.
    Communications in Numerical Methods in Engineering, 1986, 2 (04): : 411 - 417
  • [25] A Dynamical Multi-level Scheme for the Burgers Equation: Wavelet and Hierarchical Finite Element
    A. Debussche
    J. Laminie
    E. Zahrouni
    Journal of Scientific Computing, 2005, 25 : 445 - 497
  • [26] The multi-level Monte Carlo finite element method for a stochastic Brinkman Problem
    Claude J. Gittelson
    Juho Könnö
    Christoph Schwab
    Rolf Stenberg
    Numerische Mathematik, 2013, 125 : 347 - 386
  • [27] The multi-level Monte Carlo finite element method for a stochastic Brinkman Problem
    Gittelson, Claude J.
    Konno, Juho
    Schwab, Christoph
    Stenberg, Rolf
    NUMERISCHE MATHEMATIK, 2013, 125 (02) : 347 - 386
  • [28] A Dynamical Multi-level scheme for the Burgers equation: Wavelet and hierarchical finite element
    Debussche, A
    Laminie, J
    Zahrouni, E
    JOURNAL OF SCIENTIFIC COMPUTING, 2005, 25 (03) : 445 - 497
  • [29] Finite element analysis of multi-level interconnection under cyclic thermomechanical loads
    Wu, Kuo-Tsai
    Hwang, Sheng-Jye
    Lee, Huei-Huang
    Lin, Bing-Yeh
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2018, 24 (02): : 1003 - 1016
  • [30] Finite element analysis of multi-level interconnection under cyclic thermomechanical loads
    Kuo-Tsai Wu
    Sheng-Jye Hwang
    Huei-Huang Lee
    Bing-Yeh Lin
    Microsystem Technologies, 2018, 24 : 1003 - 1016