Microstructure evolution and the mechanical properties of in-situ Ti2AlCw-NbC@TiBx/TiAlNb composite with high performance

被引:6
|
作者
Cui, Sen [1 ]
Cui, Chunxiang [1 ]
Yang, Shichao [1 ]
Liu, Shuangjin [1 ]
机构
[1] Hebei Univ Technol, Sch Mat Sci & Technol, Key Lab New Type Funct Mat Hebei Prov, Xiping Rd 5340, Tianjin 300401, Peoples R China
基金
中国国家自然科学基金;
关键词
Titanium-aluminium; Interface; Core-shell structure; Mechanical properties; METAL-MATRIX COMPOSITES; HIGH-TEMPERATURE DEFORMATION; PARTICLE-SIZE; PHASE-TRANSFORMATION; BEHAVIOR; CARBIDE; ALUMINUM; INSIGHTS; STRESS; MODEL;
D O I
10.1016/j.compositesb.2022.109689
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This manuscript reports an innovative preparation method of TiAl matrix composites. The mixed AlNb powder and B4C powder were put into TiAlNb alloy melt after ball milling. With the help of the reaction in AlNb/B4C powders and the in-situ reaction of various elements in TiAlNb alloy melt, hybrid Ti2AlCw and NbC@TiBx core shell structure with high dispersion and good interface bonding were synthesized and introduced into TiAlNb alloy. The analysis shows that the NbC/TiBX of the core-shell structure was based on the in-situ reaction on the NbC substrate obtained in high-energy ball milling and was formed by the in situ reaction in the TiAlNb melt. The NbC@TiBx structure and the in-situ Ti2AlC whiskers both have excellent interfacial bonding with TiAl matrix. In this TiAlNb composite with dual-scale reinforcements, the combination of multiple strengthening/toughening mechanisms improves the mechanical properties of TiAlNb alloy matrix. The in-situ Ti2AlCw and NbC@TiBx hybrid reinforced TiAlNb composite was prepared successfully. Room compression tests show that the fracture stress and strain of the composite are increased from 1548 MPa, 20.6% to 2678 MPa, 29.1%. And the high temperature compression tests (at 1073 K) show that the fracture stress and strain of the alloy are increased from 641 MPa, 23.4% to 1012 MPa, 35.9%.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Microstructure and mechanical properties of in-situ TiB2/Al composites
    Li Y.-F.
    Huang L.-X.
    Wang L.-S.
    Liu C.-H.
    Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, 2020, 30 (01): : 33 - 39
  • [42] MICROSTRUCTURE AND MECHANICAL PROPERTIES OF IN-SITU FORMATION FIBROUS POLYTYPE AlN COMPOSITE-MATERIAL
    LI Zonghuai CHEN Shengqi ZHOU Yanchun XIA Fei Institute of Metal Research
    Acta Metallurgica Sinica(English Edition), 1993, (07) : 41 - 45
  • [43] Processing, microstructure and mechanical properties of in-situ Ti3Al+TiAl matrix composite reinforced with Ti2AlC particles prepared by centrifugal casting
    Lapin, J.
    Kamyshnykova, K.
    INTERMETALLICS, 2018, 98 : 34 - 44
  • [44] Investigation on microstructure, mechanical and tribological properties of in-situ (TiB plus TiC)/Ti composite during the electron beam surface melting
    Tao, Xuewei
    Yao, Zhengjun
    Zhang, Shasha
    Liao, Jun
    Liang, Jing
    SURFACE & COATINGS TECHNOLOGY, 2018, 337 : 418 - 425
  • [45] Microstructure and mechanical properties of hot pressed Mo-Cr-Si-Ti in-situ composite, and oxidation behavior with silicide coatings
    Paul, Bhaskar
    Majumdar, Sanjib
    Suri, A. K.
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2013, 38 : 26 - 34
  • [46] Microstructural and mechanical properties of in-situ micro-laminated TiC/Ti composite synthesised
    Tan, Youde
    Cai, Hongnian
    Cheng, Xingwang
    Ma, Zhaolong
    Xu, Ziqi
    Zhou, Zhifang
    MATERIALS LETTERS, 2018, 228 : 1 - 4
  • [47] Microstructures and mechanical properties of in-situ FeCrNiCu high entropy alloy matrix composites reinforced with NbC particles
    Wu, Hao
    Huang, Sirui
    Zhao, Chenmeng
    Zhu, Heguo
    Xie, Zonghan
    Tu, Chunlei
    Li, Xiangdong
    INTERMETALLICS, 2020, 127
  • [48] Microstructure evolution and mechanical properties of in-situ Ti6Al4V-TiB-Ti2Ni composites manufactured by laser directed energy deposition
    Wang, Yushi
    Yang, Guang
    Zhang, Shengnan
    Zhou, Siyu
    Li, Bobo
    An, Da
    He, Bo
    Li, Xintong
    Xiao, Yongjie
    Lin, Pengxiang
    COMPOSITES PART B-ENGINEERING, 2025, 292
  • [49] Fabrication, Microstructure and Mechanical Properties of TiC/Ti2AlC/TiAl3 in situ Composite
    Shi, Lu
    Zhang, Jianfeng
    Wang, Lianjun
    Jiang, Wan
    Chen, Lidong
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2011, 27 (03) : 239 - 244