Applicability of Machine Learning Model to Simulate Atmospheric CO2 Variability

被引:6
|
作者
Girach, Imran A. [1 ,2 ]
Ponmalar, M. [3 ]
Murugan, S. [4 ]
Rahman, P. Abdul [5 ]
Babu, S. Suresh [1 ]
Ramachandran, Radhika [1 ]
机构
[1] ISRO, Space Phys Lab, Vikram Sarabhai Space Ctr, Thiruvananthapuram 695022, Kerala, India
[2] ISRO, Space Applicat Ctr, Ahmadabad 380015, Gujarat, India
[3] ISRO, ISRO Inertial Syst Unit, Thiruvananthapuram 695022, Kerala, India
[4] ISRO, ISRO Prop Complex, Mahendragiri 627109, India
[5] ISRO, Satish Dhawan Space Ctr, Sriharikota 524124, India
基金
美国海洋和大气管理局;
关键词
Artificial intelligence (AI); climate change; global warming; greenhouse gases; ORBITING CARBON OBSERVATORY-2;
D O I
10.1109/TGRS.2022.3157774
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Carbon dioxide (CO2) is the most important greenhouse gas influencing the Earth's climate; therefore, accurate modeling of its variability has paramount significance. In this regard, we have performed the simulation of CO2 residue (i.e., detrended depersonalized CO2) based on input of meteorological parameters (temperature, humidity, pressure, and wind), El Nino index, sea surface temperature, and normalized difference vegetation index in a machine learning (ML) model. Long-term observations available from the World Data Centre for Greenhouse Gases (WDCGG) and the National Oceanic and Atmospheric Administration (NOAA) have been used for training and validation of ML model. The model successfully reproduced 72% of observed variability in CO2 residue with an error of 0.45 ppmv over Mauna Loa (19.54 degrees N; -155.58 degrees E). The cumulative temperature anomaly is found to play a key role in the simulation of CO2 residue over Mauna Loa. Evaluation reveals a reasonably good agreement between modeled and observed CO2 residue (R-2 = 0.20-0.55 and root-mean-square error (RMSE) = 20%-60%) over regional sites and for global mean CO2. However, the model shows a limitation in capturing spikes likely caused by strong local influences. Inclusion of additional input parameters, representing local anthropogenic influences, is recommended to further improve the model performance over regional sites. Our study demonstrates the potential of ML modeling for the simulations of CO2 variability to complement the computationally expensive climate models.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] A Machine Learning Model for Adsorption Energies of Chemical Species Applied to CO2 Electroreduction
    Amaral, Paulo H. R.
    Torrez-Baptista, Alvaro D.
    Dionisio, Dawany
    Lopes, Thiago
    Meneghini, Julio R.
    Miranda, Caetano R.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (11)
  • [32] A generic machine learning model for CO2 equilibrium solubility into blended amine solutions
    Liu, Haonan
    Qu, Jiaqi
    Bhatti, Ali Hassan
    Barzagli, Francesco
    Li, Chao 'en
    Bi, Jiajie
    Zhang, Rui
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 334
  • [33] Machine-Learning-Augmented Chemisorption Model for CO2 Electroreduction Catalyst Screening
    Ma, Xianfeng
    Li, Zheng
    Achenie, Luke E. K.
    Xin, Hongliang
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (18): : 3528 - 3533
  • [34] Machine-learning-augmented chemisorption model for CO2 electroreduction catalyst screening
    Ma, Xianfeng
    Li, Zheng
    Achenie, Luke
    Xin, Hongliang
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [35] Atmospheric CO2 retrieval from satellite spectral measurements by a two-step machine learning approach
    Zhao, Ziqing
    Xie, Fengxin
    Ren, Tao
    Zhao, Changying
    Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 278
  • [36] Developing a new model to simulate Net CO2 exchange at AsiaFlux sites
    Ito, A.
    PHYTON-ANNALES REI BOTANICAE, 2005, 45 (04) : 55 - 59
  • [37] Atmospheric CO2 response to volcanic eruptions: The role of ENSO, season, and variability
    Froelicher, Thomas Lukas
    Joos, Fortunat
    Raible, Christoph Cornelius
    Sarmiento, Jorge Louis
    GLOBAL BIOGEOCHEMICAL CYCLES, 2013, 27 (01) : 239 - 251
  • [38] Increase in ocean acidity variability and extremes under increasing atmospheric CO2
    Burger, Friedrich A.
    John, Jasmin G.
    Frolicher, Thomas L.
    BIOGEOSCIENCES, 2020, 17 (18) : 4633 - 4662
  • [39] The utility of continuous atmospheric measurements for identifying biospheric CO2 flux variability
    Huntzinger, Deborah N.
    Gourdji, Sharon M.
    Mueller, Kimberly L.
    Michalak, Anna M.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2011, 116
  • [40] Wheat cultivars responses to drought stress and atmospheric CO2 concentration variability
    Samieadel, Sh.
    Eshghizadeh, H. R.
    Nematpour, A.
    Majidi, M. M.
    CEREAL RESEARCH COMMUNICATIONS, 2023, 52 (4) : 1411 - 1429