Accelerating High-Resolution Seismic Imaging by Using Deep Learning

被引:14
|
作者
Liu, Wei [1 ,2 ]
Cheng, Qian [2 ,3 ]
Liu, Linong [2 ]
Wang, Yun [1 ]
Zhang, Jianfeng [4 ]
机构
[1] China Univ Geosci, Sch Geophys & Informat Technol, Beijing 100083, Peoples R China
[2] Chinese Acad Sci, Inst Geol & Geophys, Key Lab Petr Resources Res, Beijing 100029, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Southern Univ Sci & Technol, Dept Earth & Space Sci, Shenzhen 518055, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 07期
基金
中国国家自然科学基金;
关键词
seismic imaging; high-resolution; deep learning; acceleration; IMPLEMENTATION; INTERPOLATION; NETWORK;
D O I
10.3390/app10072502
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The emerging applications of deep learning in solving geophysical problems have attracted increasing attention. In particular, it is of significance to enhance the computational efficiency of the computationally intensive geophysical algorithms. In this paper, we accelerate deabsorption prestack time migration (QPSTM), which can yield higher-resolution seismic imaging by compensating absorption and correcting dispersion through deep learning. This is implemented by training a neural network with pairs of small-sized patches of the stacked migrated results obtained by conventional PSTM and deabsorption QPSTM and then yielding the high-resolution imaging volume by prediction with the migrated results of conventional PSTM. We use an encoder-decoder network to highlight the features related to high-resolution migrated results in a high-order dimension space. The training data set of small-sized patches not only reduces the required high-resolution migrated result (for instance, only several inline is required) but leads to a fast convergence in training. The proposed deep-learning approach accelerates the high-resolution imaging by more than 100 times. Field data is used to demonstrate the effectiveness of the proposed method.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] High-resolution single-photon imaging with physics-informed deep learning
    Liheng Bian
    Haoze Song
    Lintao Peng
    Xuyang Chang
    Xi Yang
    Roarke Horstmeyer
    Lin Ye
    Chunli Zhu
    Tong Qin
    Dezhi Zheng
    Jun Zhang
    Nature Communications, 14 (1)
  • [32] Accelerating Deep Neural Networks for Real-time Data Selection for High-resolution Imaging Particle Detectors
    Jwa, Yeon-jae
    Di Guglielmo, Giuseppe
    Carloni, Luca P.
    Karagiorgi, Georgia
    2019 NEW YORK SCIENTIFIC DATA SUMMIT (NYSDS), 2019,
  • [33] Accelerating Seismic Dip Estimation With Deep Learning
    Wang, Xiaokai
    Liu, Dawei
    Chen, Wenchao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [34] Imaging the Seattle fault zone with high-resolution seismic tomography
    Calvert, AJ
    Fisher, MA
    GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (12) : 2337 - 2340
  • [35] Accelerating rotation of high-resolution images
    Suchitra, S.
    Lam, S. K.
    Clarke, C. T.
    Srikanthan, T.
    IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING, 2006, 153 (06): : 815 - 824
  • [36] High-resolution seismic imaging of a deep gas reservoir from azimuthal offset VSP, Saudi Arabia
    Owusu, John C.
    Nebrija, Edgardo L.
    GEOARABIA, 2007, 12 (03): : 81 - 94
  • [37] Deep-towed High Resolution multichannel seismic imaging
    Marsset, B.
    Menut, E.
    Ker, S.
    Thomas, Y.
    Regnault, J. -P.
    Leon, P.
    Martinossi, H.
    Artzner, L.
    Chenot, D.
    Dentrecolas, S.
    Spychalski, B.
    Mellier, G.
    Sultan, N.
    DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS, 2014, 93 : 83 - 90
  • [38] Deep-towed High Resolution multichannel seismic imaging
    Marsset, B.
    Menut, E.
    Ker, S.
    Thomas, Y.
    Regnault, J.-P.
    Leon, P.
    Martinossi, H.
    Artzner, L.
    Chenot, D.
    Dentrecolas, S.
    Spychalski, B.
    Mellier, G.
    Sultan, N.
    Marsset, B., 1600, Elsevier Ltd (93): : 83 - 90
  • [39] Deep-towed high resolution multichannel seismic imaging
    Marsset, B.
    Menut, E.
    Ker, S.
    Thomas, Y.
    Regnault, J.-P.
    Leon, P.
    Martinossi, H.
    Artzner, L.
    Chenot, D.
    Dentrecolas, S.
    Spychalski, B.
    Mellier, G.
    Sultan, N.
    Deep-Sea Research Part I: Oceanographic Research Papers, 2014, 93 : 83 - 90
  • [40] Cloud Detection in High-Resolution Multispectral Satellite Imagery Using Deep Learning
    Morales, Giorgio
    Huaman, Samuel G.
    Telles, Joel
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT III, 2018, 11141 : 280 - 288