Activation of signaling pathways in models of t(6;9)-acute myeloid leukemia

被引:1
|
作者
Chiriches, Claudia [1 ,2 ]
Khan, Dilawar [3 ]
Wieske, Maria [3 ]
Guillen, Nathalie [3 ]
Rokicki, Michal [1 ,2 ]
Guy, Carol [1 ,2 ]
Wilson, Marieangela [4 ]
Heesom, Kate J. [4 ]
Ottmann, Oliver Gerhard [1 ,2 ]
Ruthardt, Martin [1 ,2 ]
机构
[1] Cardiff Univ, Sch Med, Dept Haematol, Div Canc & Genet, Cardiff CF14 4XN, Wales
[2] Cardiff Univ, Expt Clin Med Ctr ECMC Cardiff, Sch Med, Cardiff CF14 4XN, Wales
[3] Goethe Univ Frankfurt, Dept Hematol, Theodor Stern Kai 7, D-60590 Frankfurt, Germany
[4] Univ Bristol, Prote Facil, Biomed Sci Bldg, Bristol BS8 1TD, Avon, England
基金
芬兰科学院;
关键词
AML; Therapy resistance; t(6.9); DEK/CAN; ETV6/ABL1; Signaling pathways; TYROSINE KINASE; STEM-CELLS; T(6/9)(P23; Q34); NEOPLASMS; LYN; CLASSIFICATION; ESTABLISHMENT; EXPRESSION; PROTEINS; RELAPSE;
D O I
10.1007/s00277-022-04905-9
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Patients within the WHO-subgroup of t(6;9)-positive acute myeloid leukemia (AML) differ from other AML subgroups as they are characterised by younger age and a grim prognosis. Leukemic transformation can often be attributed to single chromosomal aberrations encoding oncogenes, in the case of t(6;9)-AML to the fusion protein DEK-CAN (also called DEK-NUP214). As being a rare disease there is the urgent need for models of t(6;9)-AML. The only cell line derived from a t(6;9)-AML patient currently available is FKH1. By using phospho-proteomics on FKH1 cells, we found a strongly activated ABL1 kinase. Further investigation revealed the presence of ETV6-ABL1. This finding renders necessary to determine DEK-CAN- and ETV6-ABL1-related features when using FKH1. This can be done as ETV6-ABL1 activity in FKH1 is responsive to imatinib. Nevertheless, we provided evidence that both SFK and mTOR activation in FKH1 are DEK-CAN-related features as they were activated also in other t(6;9) and DEK-CAN-positive models. The activation of STATS previously shown to be strong in t(6;9)-AML and activated by DEK-CAN is regulated in FKH1 by both DEK-CAN and ETV6-ABL1. In conclusion, FKH1 cells still represent a model for t(6;9)-AML and could serve as model for ETV6-ABL1-positive AML if the presence of these leukemia-inducing oncogenes is adequately considered. Taken together, all our results provide clear evidence of novel and specific interdependencies between leukemia-inducing oncogenes and cancer signaling pathways which will influence the design of therapeutic strategies to better address the complexity of cancer signaling.
引用
收藏
页码:2179 / 2193
页数:15
相关论文
共 50 条
  • [31] T(6;9;22): NEW VARIANT TRANSLOCATION IN CHRONIC MYELOID LEUKEMIA
    Menna, G.
    Petruzziello, F.
    Vicari, L.
    Leszl, A.
    Parasole, R.
    Marra, N.
    Izzo, B.
    Casadei, G. Muccioli
    Tarsitano, M.
    Misuraca, A.
    Menna, F.
    Buffardi, S.
    Poggi, V.
    HAEMATOLOGICA-THE HEMATOLOGY JOURNAL, 2009, 94 : 576 - 576
  • [32] Signaling pathways involved in the development of T-cell acute lymphoblastic leukemia
    Staal, Frank J. T.
    Langerak, Anton W.
    HAEMATOLOGICA, 2008, 93 (04) : 493 - 497
  • [33] Signaling pathways involvement in acute myeloid leukemia resistance to BRD4 inhibitor.
    Latancia, Marcela
    Inoue, Lilian
    Souza, Jussara
    Koyama, Fernanda
    Asprino, Paula
    Pereira, Welbert de Oliveira
    Saraiva Camara, Niels Olsen
    Lima Reis, Luiz Fernando
    Amano, Mariane Tami
    CLINICAL CANCER RESEARCH, 2018, 24 (01) : 23 - 23
  • [34] Role of the PI3K/AKT and mTOR signaling pathways in acute myeloid leukemia
    Park, Sophie
    Chapuis, Nicolas
    Tamburini, Jerome
    Bardet, Valerie
    Cornillet-Lefebvre, Pascale
    Willems, Lise
    Green, Alexa
    Mayeux, Patrick
    Lacombe, Catherine
    Bouscary, Didier
    HAEMATOLOGICA-THE HEMATOLOGY JOURNAL, 2010, 95 (05): : 819 - 828
  • [35] Targeting mTOR signaling pathways and related negative feedback loops for the treatment of acute myeloid leukemia
    Carneiro, Benedito A.
    Kaplan, Jason B.
    Altman, Jessica K.
    Giles, Francis J.
    Platanias, Leonidas C.
    CANCER BIOLOGY & THERAPY, 2015, 16 (05) : 648 - 656
  • [36] Developing novel strategy for the treatment of acute myeloid leukemia by targeting retinoic acid signaling pathways
    Hasipek, Metis
    Grabowski, Dale
    Phillips, James G.
    Guan, Yihong
    Carraway, Hetty
    Maciejewski, Jaroslaw
    Jha, Babal K.
    CANCER RESEARCH, 2018, 78 (13)
  • [37] Complementing therapeutic strategies for acute myeloid leukemia: Signaling pathways and targets of traditional Chinese medicine
    Wu, Qiaoliang
    Zhong, Lei
    Zhang, Guibing
    Han, Liying
    Xie, Jing
    Xu, Yao
    LEUKEMIA RESEARCH, 2025, 151
  • [38] Epigenetic activation of PRAME in acute myeloid leukemia
    Ortmann, C. A.
    Eisele, L.
    Nuckel, H.
    Klein-Hitpass, L.
    Fuhrer, A.
    Duhrsen, U.
    Zeschnigk, M.
    EXPERIMENTAL HEMATOLOGY, 2007, 35 (09) : 78 - 79
  • [39] Characteristics and Outcome of Patients with Acute Myeloid Leukemia and t(6;9)(p22;q34)
    Kayser, Sabine
    Hills, Robert K.
    Luskin, Marlise R.
    Brunner, Andrew M.
    Shaw, Carole
    Westermann, Joerg
    Menghrajani, Kamal
    Baer, Maria R.
    Elliott, Michelle A.
    Perl, Alexander E.
    Terre, Christine
    Racil, Zdenek
    Mayer, Jiri
    Zak, Pavel
    Szotkowski, Tomas
    Grimwade, David
    Mayer, Karin
    Walter, Roland B.
    Kramer, Alwin
    Burnett, Alan K.
    Ho, Anthony D.
    Stone, Richard M.
    Tallman, Martin S.
    Estey, Elihu H.
    Muller-Tidow, Carsten
    Russell, Nigel H.
    Schlenk, Richard F.
    Levis, Mark J.
    BLOOD, 2017, 130
  • [40] T(6,9) IN BONE-MARROW CELLS IN 2 PATIENTS WITH SARCOIDOSIS AND ACUTE MYELOID-LEUKEMIA
    NORDENSON, I
    BJERMER, L
    HOLMGREN, G
    HORNSTEN, P
    WAHLIN, A
    CANCER GENETICS AND CYTOGENETICS, 1989, 38 (02) : 297 - 300