Safe Visual Data Exploration

被引:3
|
作者
Zhao, Zheguang [1 ]
Zgraggen, Emanuel [1 ]
De Stefani, Lorenzo [1 ]
Binnig, Carsten [1 ]
Upfal, Eli [1 ]
Kraska, Tim [1 ]
机构
[1] Brown Univ, Dept Comp Sci, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
D O I
10.1145/3035918.3058749
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Exploring data via visualization has become a popular way to understand complex data. Features or patterns in visualization can be perceived as relevant insights by users, even though they may actually arise from random noise. Moreover, interactive data exploration and visualization recommendation tools can examine a large number of observations, and therefore result in further increasing chance of spurious insights. Thus without proper statistical control, the risk of false discovery renders visual data exploration unsafe and makes users susceptible to questionable inference. To address these problems, we present QUDE, a visual data exploration system that interacts with users to formulate hypotheses based on visualizations and provides interactive control of false discoveries.
引用
收藏
页码:1671 / 1674
页数:4
相关论文
共 50 条
  • [21] Guided Visual Exploration of Relations in Data Sets
    Puolamaki, Kai
    Oikarinen, Emilia
    Henelius, Andreas
    JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [22] Visual data exploration using Legendre wavelets
    Ueda, M
    Lodha, SK
    VISUAL DATA EXPLORATION AND ANALYSIS III, 1996, 2656 : 46 - 57
  • [23] VizCertify: A framework for secure visual data exploration
    De Stefani, Lorenzo
    Spiegelberg, Leonhard F.
    Upfal, Eli
    Kraska, Tim
    2019 IEEE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA 2019), 2019, : 241 - 251
  • [24] Big Data Exploration through Visual Analytics
    Abousalh-Neto, Nascif A.
    Kazgan, Sumeyye
    2012 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2012, : 285 - 286
  • [25] NeuralCubes: Deep Representations for Visual Data Exploration
    Wang, Zhe
    Cashman, Dylan
    Li, Mingwei
    Li, Jixian
    Berger, Matthew
    Levine, Joshua A.
    Chang, Remco
    Scheidegger, Carlos
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 550 - 561
  • [26] Survey of the Visual Exploration and Analysis of Perfusion Data
    Preim, Bernhard
    Oeltze, Steffen
    Mlejnek, Matej
    Groeller, Eduard
    Hennemuth, Anja
    Behrens, Sarah
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2009, 15 (02) : 205 - 220
  • [27] Visual Cluster Exploration of Web Clickstream Data
    Wei, Jishang
    Shen, Zeqian
    Sundaresan, Neel
    Ma, Kwan-Liu
    2012 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2012, : 3 - 12
  • [28] A visual language for Interactive Data Exploration and Analysis
    Selfridge, P
    Srivastava, D
    IEEE SYMPOSIUM ON VISUAL LANGUAGES, PROCEEDINGS, 1996, : 84 - 85
  • [29] Big data visual exploration as a recommendation problem
    Kahil, Moustafa Sadek
    Bouramoul, Abdelkrim
    Derdour, Makhlouf
    INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT, 2023, 15 (02) : 133 - 153
  • [30] Guided visual exploration of relations in data sets
    Puolamäki, Kai
    Oikarinen, Emilia
    Henelius, Andreas
    Journal of Machine Learning Research, 2021, 22