On the hypergeometric matrix function

被引:137
|
作者
Jodar, L [1 ]
Cortes, JC [1 ]
机构
[1] Univ Politecn Valencia, Dept Matemat Aplicada, E-46071 Valencia, Spain
关键词
33C05; 33C25; 34A05; 15A60;
D O I
10.1016/S0377-0427(98)00158-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the study of the hypergeometric function with matrix arguments F(A,B; C;z). Conditions for matrices A, B, C so that the series representation of the hypergeometric function be convergent for /z/ = 1 and satisfies a matrix differential equation are given. After the study of beta and gamma matrix functions, an integral representation of F(A,B; C;z) is obtained for the case where B, C and C - B are positive stable matrices with BC = CB. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:205 / 217
页数:13
相关论文
共 50 条
  • [21] The determinant of a hypergeometric period matrix
    Markov, Y
    Tarasov, V
    Varchenko, A
    HOUSTON JOURNAL OF MATHEMATICS, 1998, 24 (02): : 197 - 220
  • [22] Discrete matrix hypergeometric functions
    Cuchta, Tom
    Grow, David
    Wintz, Nick
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 518 (02)
  • [23] On the incomplete hypergeometric matrix functions
    M. Abdalla
    The Ramanujan Journal, 2017, 43 : 663 - 678
  • [24] On the incomplete hypergeometric matrix functions
    Abdalla, M.
    RAMANUJAN JOURNAL, 2017, 43 (03): : 663 - 678
  • [25] The determinant of a hypergeometric period matrix
    Douai, A
    Terao, H
    INVENTIONES MATHEMATICAE, 1997, 128 (03) : 417 - 436
  • [26] The determinant of a hypergeometric period matrix
    Antoine Douai
    Hiroaki Terao
    Inventiones mathematicae, 1997, 128 : 417 - 436
  • [27] Computing the Hypergeometric Function
    Harvard-Smithsonian Ctr. Astrophys., 60 Garden Street, Cambridge, MA 02138, United States
    J. Comput. Phys., 1 (79-100):
  • [28] A relativistic hypergeometric function
    Ruijsenaars, SNM
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 178 (1-2) : 393 - 417
  • [29] ZEROS OF HYPERGEOMETRIC FUNCTION
    RUNCKEL, HJ
    MATHEMATISCHE ANNALEN, 1971, 191 (01) : 53 - &
  • [30] CONFLUENT HYPERGEOMETRIC FUNCTION
    Nath, Pran
    SANKHYA, 1951, 11 : 153 - 166