Nonlinear vibrations and mode interactions for a continuous rod with microstructure

被引:12
|
作者
Andrianov, Igor V. [1 ]
Danishevskyy, Vladyslav V. [2 ]
Markert, Bernd [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Gen Mech, D-52062 Aachen, Germany
[2] Pydniprovska State Acad Civil Engn & Architecture, Dept Struct Mech & Strength Mat, UA-49600 Dnepropetrovsk, Ukraine
关键词
SPATIALLY CONTINUOUS SYSTEMS; ELASTIC-WAVE SPECTROSCOPY; INTERNAL RESONANCES; COMPOSITE-MATERIALS; ASYMPTOTIC THEORY; BEAM EQUATION; BUCKLED BEAMS; PROPAGATION; HOMOGENIZATION; MEDIA;
D O I
10.1016/j.jsv.2015.04.011
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Natural longitudinal vibrations of a periodically heterogeneous rod embedded into a nonlinear elastic matrix are considered. The governing macroscopic dynamical equation was obtained by the higher order asymptotic homogenization method. An asymptotic solution is developed by the method of multiple time scales. The effects of internal resonances and modes coupling are predicted. The specific objective of the paper is to analyse how the presence of the microstructure influences on the processes of mode interactions. It is shown that depending on a scaling relation between the amplitude of the vibrations and the size of the unit cell different scenarios of the modes coupling can be realized. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:268 / 281
页数:14
相关论文
共 50 条
  • [41] Generation of three-mode continuous-variable entanglement by cascaded nonlinear interactions in a quasiperiodic superlattice
    Yu, Y. B.
    Xie, Z. D.
    Yu, X. Q.
    Li, H. X.
    Xu, P.
    Yao, H. M.
    Zhu, S. N.
    PHYSICAL REVIEW A, 2006, 74 (04):
  • [42] Generalized continuum model for the analysis of nonlinear vibrations of taut strings with microstructure
    Serrano, O.
    Zaera, R.
    Fernandez-Saez, J.
    Ruzzene, M.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2019, 164 : 157 - 167
  • [43] Modelling of nonlinear modal interactions in the transient dynamics of an elastic rod with an essentially nonlinear attachment
    Tsakirtzis, S.
    Lee, Y. S.
    Vakakis, A. F.
    Bergman, L. A.
    McFarland, D. M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (09) : 2617 - 2633
  • [44] On Mode Interactions for a Weakly Nonlinear Beam Equation
    G. J. Boertjens
    W. T. Van Horssen
    Nonlinear Dynamics, 1998, 17 : 23 - 40
  • [45] On mode interactions for a weakly nonlinear beam equation
    Boertjens, GJ
    Van Horssen, WT
    NONLINEAR DYNAMICS, 1998, 17 (01) : 23 - 40
  • [46] NONLINEAR MODE INTERACTIONS IN UNIVERSAL PLASMA INSTABILITIES
    LASHINSKY, H
    PHYSICAL REVIEW LETTERS, 1965, 14 (26) : 1064 - +
  • [47] Longitudinal vibrations in a loaded rod
    Hubbard, BR
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1931, 2 (03): : 372 - 383
  • [48] Flexural vibrations of a moving rod
    Akulenko, L. D.
    Nesterov, S. V.
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2008, 72 (05): : 550 - 560
  • [49] AXIAL VIBRATIONS OF A STOCHASTIC ROD
    MANOHAR, CS
    KEANE, AJ
    JOURNAL OF SOUND AND VIBRATION, 1993, 165 (02) : 341 - 359
  • [50] ON REGULAR AND IRREGULAR NONLINEAR VIBRATIONS IN TORSIONAL DISCRETE-CONTINUOUS SYSTEMS
    Pielorz, Amalia
    Sado, Danuta
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (10): : 3073 - 3082