Pressure-driven membrane processes for boron and arsenic removal: pH and synergistic effects

被引:19
|
作者
Regis, Aina Orell [1 ]
Vanneste, Johan [1 ]
Acker, Sarah [1 ]
Martinez, Gisella [2 ]
Ticona, Juana [2 ]
Garcia, Vilma [2 ]
Alejo, Francisco D. [2 ]
Zea, Julia [2 ]
Krahenbuhl, Richard [1 ]
Vanzin, Gary [1 ]
Sharp, Jonathan O. [1 ]
机构
[1] Colorado Sch Mines, Ctr Min Sustainabil, Dept Civil & Environm Engn, Golden, CO 80401 USA
[2] Univ Nacl San Agustin Arequipa, Ctr Mineria Sostenible, Arequipa 04000, Peru
关键词
Arsenic; Boron; pH; Nanofiltration; Reverse osmosis; REVERSE-OSMOSIS; DRINKING-WATER; NANOFILTRATION; REJECTION; TECHNOLOGY; GROUNDWATER; ION; RO;
D O I
10.1016/j.desal.2021.115441
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This study analyzed novel synergistic effects on rejection of arsenic and boron during membrane-based treatment. The effect of pH on rejection was characterized for pure and mixed arsenate, arsenite and borate (As(V), As (III), and B respectively) solutions. The favorable effect of high pH was strongest for B and As(III) due to the similar charge evolution in the pH 7-11 range. While only significant for arsenate, both arsenic species exhibited higher rejections when boron was present. Analysis of watersheds in southern Peru revealed a correlation between arsenic and boron; synthetic river water containing 10 mg/L B (0.97 mmol/L) and 1 mg/L As (0.013 mmol/L) was subsequently tested. Both reverse osmosis (BW30) and nanofiltration membranes (NF90) produced a system permeate that complied with the WHO standards (1 mg/L B and 0.01 mg/L As) above pH 9 in these representative, contaminated waters. The combination of increasing the pH from 7 to 9.5 and the synergistic effect doubled the allowable concentration of As(V) in the feed for BW30 from 0.5 mg/L to 1.0 mg/L. In addition to informing treatment of surface and ground waters, findings could be applied to the reuse of high pH gold cyanidation wastewaters and enhancing boron rejection during seawater desalination.
引用
下载
收藏
页数:11
相关论文
共 50 条
  • [21] Roles of surfactants in pressure-driven membrane separation processes: a review
    Lixiu Shi
    Jinhui Huang
    Guangming Zeng
    Lei Zhu
    Yanling Gu
    Yahui Shi
    Kaixin Yi
    Xue Li
    Environmental Science and Pollution Research, 2019, 26 : 30731 - 30754
  • [22] Inorganic fouling of pressure-driven membrane processes - A critical review
    Shirazi, Saqib
    Lin, Che-Jen
    Chen, Dong
    DESALINATION, 2010, 250 (01) : 236 - 248
  • [23] MASS-TRANSPORT CONSIDERATIONS FOR PRESSURE-DRIVEN MEMBRANE PROCESSES
    WIESNER, MR
    CHELLAM, S
    JOURNAL AMERICAN WATER WORKS ASSOCIATION, 1992, 84 (01): : 88 - 95
  • [24] Roles of surfactants in pressure-driven membrane separation processes: a review
    Shi, Lixiu
    Huang, Jinhui
    Zeng, Guangming
    Zhu, Lei
    Gu, Yanling
    Shi, Yahui
    Yi, Kaixin
    Li, Xue
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2019, 26 (30) : 30731 - 30754
  • [25] Control of microorganisms in drinking water by pressure-driven membrane processes
    Jacangelo, Joseph G.
    Control of Microorganisms in Drinking Water, 2002, : 163 - 181
  • [26] Pressure-driven membrane desalination
    Weifan Liu
    Joshua L. Livingston
    Li Wang
    Zhangxin Wang
    Martina del Cerro
    Saad A. Younssi
    Razi Epsztein
    Menachem Elimelech
    Shihong Lin
    Nature Reviews Methods Primers, 4
  • [27] Pressure-driven membrane desalination
    不详
    NATURE REVIEWS METHODS PRIMERS, 2024, 4 (01):
  • [28] Comparison of aeration effect between pressure-driven and thermal membrane processes
    Choi, Jihyeok
    Choi, Yongjun
    Ju, Jaehyun
    Kim, Bomin
    Park, Youngkyu
    Lee, Sangho
    DESALINATION AND WATER TREATMENT, 2020, 192 : 1 - 10
  • [29] Mass transfer in pressure-driven membrane separation processes, Part I
    Merdaw, A. A.
    Sharif, A. O.
    Derwish, G. A. W.
    CHEMICAL ENGINEERING JOURNAL, 2011, 168 (01) : 215 - 228
  • [30] ENHANCED PERFORMANCE FOR PRESSURE-DRIVEN MEMBRANE PROCESSES - THE ARGUMENT FOR FLUID INSTABILITIES
    WINZELER, HB
    BELFORT, G
    JOURNAL OF MEMBRANE SCIENCE, 1993, 80 (1-3) : 35 - 47