TimeClust: a clustering tool for gene expression time series

被引:36
|
作者
Magni, Paolo [1 ]
Ferrazzi, Fulvia [1 ]
Sacchi, Lucia [1 ]
Bellazzi, Riccardo [1 ]
机构
[1] Univ Pavia, Dipartimento Informat & Sistemist, I-27100 Pavia, Italy
关键词
D O I
10.1093/bioinformatics/btm605
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
TimeClust is a user-friendly software package to cluster genes according to their temporal expression profiles. It can be conveniently used to analyze data obtained from DNA microarray time-course experiments. It implements two original algorithms specifically designed for clustering short time series together with hierarchical clustering and self-organizing maps.
引用
收藏
页码:430 / 432
页数:3
相关论文
共 50 条
  • [21] Hybrid Attentive Graph Neural Networks for time series gene expression clustering
    Giovanoudi, Eleni
    Rafailidis, Dimitrios
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 277
  • [22] Clustering gene expression series with prior knowledge
    Bréhélin, L
    ALGORITHMS IN BIOINFORMATICS, PROCEEDINGS, 2005, 3692 : 27 - 38
  • [23] Clustering time series gene expression data based on sum-of-exponentials fitting
    Giurcaneanu, CD
    Tabus, L
    Astola, J
    EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2005, 2005 (08) : 1159 - 1173
  • [24] Clustering for time-series gene expression data using mixture of constrained PCAS
    Yoshioka, T
    Ishii, S
    ICONIP'02: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING: COMPUTATIONAL INTELLIGENCE FOR THE E-AGE, 2002, : 2239 - 2243
  • [25] Multiple gene expression profile alignment for microarray time-series data clustering
    Subhani, Numanul
    Rueda, Luis
    Ngom, Alioune
    Burden, Conrad J.
    BIOINFORMATICS, 2010, 26 (18) : 2281 - 2288
  • [26] A novel gene-centric clustering algorithm for standardization of time series expression data
    Tsiporkova, Elena
    Boeva, Veselka
    2008 4TH INTERNATIONAL IEEE CONFERENCE INTELLIGENT SYSTEMS, VOLS 1 AND 2, 2008, : 533 - +
  • [27] Clustering Time Series Gene Expression Data Based on Sum-of-Exponentials Fitting
    Ciprian Doru Giurcăneanu
    Ioan Tăbuş
    Jaakko Astola
    EURASIP Journal on Advances in Signal Processing, 2005
  • [28] Clustering Time-Series Gene Expression Data Using Smoothing Spline Derivatives
    Dejean, S.
    Martin, P. G. P.
    Baccini, A.
    Besse, P.
    EURASIP JOURNAL ON BIOINFORMATICS AND SYSTEMS BIOLOGY, 2007, (01):
  • [29] A Pattern Consistency Index for Detecting Heterogeneous Time Series in Clustering Time Course Gene Expression Data
    Son, Young Sook
    Baek, Jangsun
    KOREAN JOURNAL OF APPLIED STATISTICS, 2005, 18 (02) : 371 - 379
  • [30] An integrated time series gene expression data analysis pipeline with a fuzzy clustering method to assess expression patterns
    Yankilevich, P.
    Barrero, P. R.
    Zwir, I.
    2007 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-4, 2007, : 1362 - +