Effect of grain boundary deformation on mechanical properties in nanocrystalline Cu film investigated by using phase field and molecular dynamics simulation methods

被引:15
|
作者
Zhang, Meng [1 ]
Chen, Juan [1 ]
Xu, Ting [1 ]
Li, Meie [1 ]
Sun, Kun [1 ]
Fang, Liang [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
[2] Xiamen Univ, Sch Mech & Elect Engn, Tan Kah Kee Coll, Zhangzhou 363105, Peoples R China
基金
中国国家自然科学基金;
关键词
DEPENDENT DEFORMATION; DRIVEN MIGRATION; TWIN BOUNDARIES; COPPER; STRESS; BEHAVIOR; TENSILE; TRANSFORMATIONS; MICROSTRUCTURES; CONFIGURATIONS;
D O I
10.1063/1.5136326
中图分类号
O59 [应用物理学];
学科分类号
摘要
Molecular dynamics simulations are performed to study the mechanical behaviors and microstructural evolution in nanocrystalline Cu films created by the phase field model under different strain rates and temperatures. The results indicate that grain boundaries' (GBs) migration caused by shear stress difference of GBs is found in the initial deformation stage. The migration on the site with a small curvature radius of curved GBs is large due to the high stress difference. The migration process of curved GBs in the initial stage is that atoms migrate from FCC structures to GBs along the (111) surface, which is different from the mechanism of atomic shuffling for the flat GBs. Meanwhile, the initial GBs migration can make curved GBs become flat. In addition to temperature and stress difference, the hexagonal-close-packed (HCP) structures including stacking faults and twin boundaries can accelerate GBs' migration. The influence of initial GB migration on mechanical properties is achieved by changing the fraction and distribution of HCP structures. Larger initial GB migration at a higher temperature significantly reduces stress concentration on GBs, which leads to the distribution of HCP changing from the grains with large initial GB migration to other grains. Therefore, the sites of crack nucleation at conditions of low and high temperatures are different due to different magnitudes of initial GB migration.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Mechanical properties of nanocrystalline nanoporous gold complicated by variation of grain and ligament: A molecular dynamics simulation
    Li JieJie
    Xian YueHui
    Zhou HongJian
    Wu RunNi
    Hu GuoMing
    Xia Re
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2018, 61 (09) : 1353 - 1363
  • [22] Grain boundary induced deformation mechanisms in nanocrystalline Al by molecular dynamics simulation: From interatomic potential perspective
    Zhang, Liang
    Shibuta, Yasushi
    Huang, Xiaoxu
    Lu, Cheng
    Liu, Mao
    COMPUTATIONAL MATERIALS SCIENCE, 2019, 156 : 421 - 433
  • [23] Strain rate effect on plastic deformation of nanocrystalline copper investigated by molecular dynamics
    Zhang, Ting
    Zhou, Kai
    Chen, Z. Q.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 648 : 23 - 30
  • [24] Study of the effects of grain size on the mechanical properties of nanocrystalline copper using molecular dynamics simulation with initial realistic samples
    Rida, A.
    Rouhaud, E.
    Makke, A.
    Micoulaut, M.
    Mantisi, B.
    PHILOSOPHICAL MAGAZINE, 2017, 97 (27) : 2387 - 2405
  • [25] Mechanical properties depending on grain sizes of face-centered-cubic nanocrystalline metals using molecular dynamics simulation
    Shimokawa, T
    Nakatani, A
    JSME INTERNATIONAL JOURNAL SERIES A-SOLID MECHANICS AND MATERIAL ENGINEERING, 2004, 47 (02) : 83 - 91
  • [26] Mechanical Properties and Deformation Mechanisms of Nanocrystalline U-10Mo Alloys by Molecular Dynamics Simulation
    Ou, Xuelian
    Shen, Yanxin
    Yang, Yue
    You, Zhenjiang
    Wang, Peng
    Yang, Yexin
    Tian, Xiaofeng
    MATERIALS, 2023, 16 (13)
  • [27] Comparison of molecular dynamics simulation methods for the study of grain boundary migration
    Mendelev, M. I.
    Deng, C.
    Schuh, C. A.
    Srolovitz, D. J.
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2013, 21 (04)
  • [28] Molecular dynamics simulation for grain boundary deformation under tensile loading condition
    Kim, YS
    Choi, DY
    Won, SY
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2001, 17 (01) : 145 - 146
  • [30] Molecular dynamics simulation for grain boundary deformation under tensile loading condition
    Kim, Y.S.
    Choi, D.Y.
    Won, S.Y.
    Journal of Materials Science and Technology, 2001, 17 (01): : 145 - 146