Cavity polaritons for new photonic devices

被引:1
|
作者
Wertz, E. [1 ]
Ferrier, L. [1 ]
Bajoni, D. [1 ]
Senellart, P. [1 ]
Lemaitre, A. [1 ]
Sagnes, I. [1 ]
Bouchoule, S. [1 ]
Barbay, S. [1 ]
Kuszelewicz, R. [1 ]
Bloch, J. [1 ]
机构
[1] CNRS, LPN, F-91460 Marcoussis, France
关键词
microcavity; polariton; laser; LED; bistability; BOSE-EINSTEIN CONDENSATION; ROOM-TEMPERATURE; SEMICONDUCTOR MICROCAVITIES; STIMULATED SCATTERING; EXCITON POLARITONS; GAN MICROCAVITIES; LASERS;
D O I
10.1117/12.839509
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In high finesse semiconductor microcavities containing quantum wells, photons emitted by the quantum well excitons can oscillate long enough inside the cavity to be reabsorbed reemitted again and so forth. The system enters the so-called strong coupling regime, with the formation of entangled exciton-photon eigenstates, named cavity polaritons, which governs all the physics of the system. After an introduction to cavity polaritons, we will review in this paper some of their original physical properties and discuss their potential in terms of new photonic devices. In a first part, we will show how polaritons can massively occupy a single quantum state, thus acquiring spatial and temporal coherence reflected in the emitted light. Such polariton laser could provide a low threshold source of coherent light. Then the properties of polariton diodes will be addressed and in particular we will describe a new optical bistability based on the control of the light matter coupling via the intra cavity electric field.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Study of surface plasmon polaritons near the photonic-bandgap edge for interphotonic band switching devices
    Onuki, T.
    Ohtera, Y.
    Tokizaki, T.
    JOURNAL OF MICROSCOPY-OXFORD, 2008, 229 (03): : 447 - 451
  • [32] Realization of large-scale photonic crystal cavity-based devices
    Goyal, Amit Kumar
    Dutta, Hemant Sankar
    Singh, Sumitra
    Kaur, Mandeep
    Husale, Sudhir
    Pal, Suchandan
    JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS, 2016, 15 (03):
  • [33] Comparison of Photonic-Crystal-Enhanced Thermophotovoltaic Devices With and Without a Resonant Cavity
    Corey Shemeya
    Thomas E. Vandervelde
    Journal of Electronic Materials, 2012, 41 : 928 - 934
  • [34] Coherence effects in light scattering of two-dimensional photonic disordered systems:: Elastic scattering of cavity polaritons
    Houdré, R
    Weisbuch, C
    Stanley, RP
    Oesterle, U
    Ilegems, M
    PHYSICAL REVIEW B, 2000, 61 (20) : 13333 - 13336
  • [35] Cavity polaritons in one-dimensional photonic crystals containing dye molecule-titanate nanosheet hybrids
    Ishii, Kenta
    Suzuki, Makoto
    Chen, Changdong
    Feng, Qi
    Nakanishi, Shunsuke
    Tsurumachi, Noriaki
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2014, 53 (02)
  • [36] Design and investigation of surface addressable photonic crystal cavity confined band edge modes for quantum photonic devices
    Nedel, P.
    Letartre, X.
    Seassal, C.
    Auffeves, Alexia
    Ferrier, L.
    Drouard, E.
    Rahmani, A.
    Viktorovitch, P.
    OPTICS EXPRESS, 2011, 19 (06): : 5014 - 5025
  • [37] Topological protection of Majorana polaritons in a cavity
    Bacciconi, Zeno
    Andolina, Gian Marcello
    Mora, Christophe
    PHYSICAL REVIEW B, 2024, 109 (16)
  • [38] Generation of Circulating Cavity Magnon Polaritons
    Bourhill, Jeremy
    Yu, Weichao
    Vlaminck, Vincent
    Bauer, Gerrit E. W.
    Ruoso, Giuseppe
    Castel, Vincent
    PHYSICAL REVIEW APPLIED, 2023, 19 (01)
  • [39] Characteristics of cavity polaritons in a CuBr microcavity
    Katakani, Y.
    Kawase, T.
    Kim, D.
    Nakayama, M.
    EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (11):
  • [40] Topological Phases of Polaritons in a Cavity Waveguide
    Downing, C. A.
    Sturges, T. J.
    Weick, G.
    Stobinska, M.
    Martin-Moreno, L.
    PHYSICAL REVIEW LETTERS, 2019, 123 (21)