SUPER ROGUE WAVE STATES IN THE CLASSICAL MASSIVE THIRRING MODEL SYSTEM

被引:0
|
作者
Ye, Yanlin [1 ]
Bu, Lili [1 ]
Pan, Changchang [1 ]
Chen, Shihua [1 ]
Mihalache, Dumitru [2 ]
Baronio, Fabio [3 ,4 ]
机构
[1] Southeast Univ, Sch Phys, Nanjing 211189, Peoples R China
[2] Horia Hulubei Natl Inst Phys & Nucl Engn, Dept Theoret Phys, RO-077125 Bucharest, Romania
[3] Univ Brescia, INO CNR, Via Branze 38, I-25123 Brescia, Italy
[4] Univ Brescia, Dipartimento Ingn Informaz, Via Branze 38, I-25123 Brescia, Italy
基金
中国国家自然科学基金;
关键词
Super rogue wave; Peregrine soliton; Modulation instability; Massive Thirring model system; SINE-GORDON EQUATION; PEREGRINE SOLITON; GENERATION; MECHANISMS;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We obtain the exact explicit super rogue wave solutions of the classical massive Thirring model system, using a nonrecursive Darboux transformation method along with some algebraic manipulations. We reveal that in such a vector system, both rogue wave components, whenever they take the fundamental Peregrine soliton structure or the super rogue wave ones, may possess the same maximum peak-amplitude factor, behaving like those occurring in scalar nonlinear systems. However, due to the coherent coupling, the two super rogue wave components may exhibit drastically different spatiotemporal distributions, despite that they evolve from almost the same background fields. The modulation instability responsible for the rogue wave excitation in such a coupled system is also discussed.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] HIGHER CONSERVED CHARGES IN MASSIVE THIRRING MODEL
    FLUME, R
    MITTER, PK
    PAPANICOLAOU, N
    [J]. PHYSICS LETTERS B, 1976, 64 (03) : 289 - 292
  • [32] ASYMPTOTIC SCALE INVARIANCE IN A MASSIVE THIRRING MODEL
    GOMES, M
    LOWENSTEIN, JH
    [J]. NUCLEAR PHYSICS B, 1972, B 45 (01) : 252 - +
  • [33] Super rogue wave generation in the linear regime
    Bonatto, Cristian
    Prado, Sandra D.
    Metz, Fernando L.
    Schoffen, Julio R.
    Correia, Ricardo R. B.
    Hickmann, Jandir M.
    [J]. PHYSICAL REVIEW E, 2020, 102 (05)
  • [34] The hyperelliptic ζ-function and the integrable massive Thirring model
    Eilbeck, JC
    Enolskii, VZ
    Holden, H
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 459 (2035): : 1581 - 1610
  • [35] Finite size corrections in the massive Thirring model
    Fujita, T
    Takahashi, H
    [J]. PHYSICAL REVIEW D, 1998, 58 (08)
  • [36] STRONG COUPLING EXPANSION IN THE MASSIVE THIRRING MODEL
    BANERJEE, R
    [J]. PRAMANA, 1982, 19 (05) : 513 - 524
  • [37] SEMICLASSICAL QUANTIZATION OF MASSIVE THIRRING-MODEL
    MARQUES, GC
    VENTURA, I
    [J]. PHYSICAL REVIEW D, 1976, 13 (06) : 1807 - 1808
  • [38] FACTORIZATION IN MASSIVE SU(N) THIRRING MODEL
    MEYER, S
    TROSTEL, R
    [J]. PHYSICS LETTERS B, 1978, 79 (4-5) : 429 - 431
  • [39] COLEMAN CORRESPONDENCE AND SOLUTION OF MASSIVE THIRRING MODEL
    KAUP, DJ
    NEWELL, AC
    [J]. LETTERE AL NUOVO CIMENTO, 1977, 20 (09): : 325 - 331
  • [40] REFLECTIVITY OF SOLUTIONS IN MASSIVE THIRRING MODEL POTENTIAL
    HORTACSU, M
    [J]. PHYSICAL REVIEW D, 1977, 15 (12): : 3760 - 3764