A Short Proof of a Conjecture of Erdos Proved by Moreira, Richter and Robertson

被引:6
|
作者
Host, Bernard [1 ]
机构
[1] Univ Paris Est Marne la Vallee, LAMA, Champs Sur Marne, France
关键词
Sumset; Erdos Conjecture; Positive density; Folner sequence;
D O I
10.19086/da.11129
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a short proof of a sumset conjecture of Erdos, recently proved by Moreira, Richter and Robertson: every subset of the integers of positive density contains the sum of two infinite sets. The proof is written in the framework of classical ergodic theory.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] A short proof of the Gottsche conjecture
    Kool, Martijn
    Shende, Vivek
    Thomas, Richard P.
    GEOMETRY & TOPOLOGY, 2011, 15 (01) : 397 - 406
  • [22] SHORT PROOF OF MINC CONJECTURE
    SCHRIJVER, A
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1978, 25 (01) : 80 - 83
  • [23] A SHORT PROOF OF THE DENJOY CONJECTURE
    AHARONOV, D
    SREBRO, U
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 4 (03) : 325 - 328
  • [24] A short proof of the Erdos-Mordell theorem
    Komornik, V
    AMERICAN MATHEMATICAL MONTHLY, 1997, 104 (01): : 57 - 60
  • [25] Additive functions in short intervals, gaps and a conjecture of Erdos
    Mangerel, Alexander P.
    RAMANUJAN JOURNAL, 2022, 59 (04): : 1023 - 1090
  • [26] A conjecture of Erdos, supersingular primes and short character sums
    Bennett, Michael A.
    Siksek, Samir
    ANNALS OF MATHEMATICS, 2020, 191 (02) : 355 - 392
  • [27] A proof of Erdos-Fishburn's conjecture for g(6)=13
    Wei, Xianglin
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (04):
  • [28] A strengthening of Erdos-Gallai Theorem and proof of Woodall's conjecture
    Li, Binlong
    Ning, Bo
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2021, 146 : 76 - 95
  • [29] A short proof of a conjecture of Aougab–Huang
    Jonah Gaster
    Geometriae Dedicata, 2021, 213 : 339 - 343
  • [30] SHORT COMBINATORIAL PROOF OF VAUGHT CONJECTURE
    EDMUNDS, CC
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1975, 18 (04): : 607 - 608