Application of the Lagrange multiplier method the semi-inverse method to the search for generalized variational principle in quantum mechanics

被引:0
|
作者
Hao, TH [1 ]
机构
[1] Donghua Univ, Shanghai 200051, Peoples R China
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A generalized variational principle of quantum mechanics is obtained by Lagrange multiplier method and the Semi-inverse method, the later is proposed by Ji-Huan He. the stationary conditions of the obtained functional satisfy the Schrodinger equation and the normalization condition.
引用
收藏
页码:311 / 312
页数:2
相关论文
共 50 条
  • [31] CASCADE DESIGN THROUGH A SEMI-INVERSE METHOD
    MEAUZE, G
    LESAIN, A
    RECHERCHE AEROSPATIALE, 1980, (06): : 459 - 462
  • [32] Optical solitons with quadratic-cubic nonlinearity by semi-inverse variational principle
    Biswas, Anjan
    Ullah, Malik Zaka
    Asma, Mir
    Zhou, Qin
    Moshokoa, Seithuti P.
    Belic, Milivoj
    OPTIK, 2017, 139 : 16 - 19
  • [33] Cubic-quartic optical soliton perturbation by semi-inverse variational principle
    Kohl, Russell W.
    Biswas, Anjan
    Ekici, Mehmet
    Zhou, Qin
    Moshokoa, Seithuti P.
    Belic, Milivoj R.
    OPTIK, 2019, 185 : 45 - 49
  • [34] Optical soliton perturbation with Kudryashov's equation by semi-inverse variational principle
    Biswas, Anjan
    Asma, Mir
    Guggilla, Padmaja
    Mullick, Lipika
    Moraru, Luminita
    Ekici, Mehmet
    Alzahrani, Abdullah K.
    Belic, Milivoj R.
    PHYSICS LETTERS A, 2020, 384 (33)
  • [35] A New Method for Calculating General Lagrange Multiplier in the Variational Iteration Method
    Jafari, Hossein
    Alipoor, Abbas
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2011, 27 (04) : 996 - 1001
  • [36] Deriving generalized variational principles in general mechanics by using Lagrangian multiplier method
    Lifu Liang
    Science in China Series A: Mathematics, 1999, 42 : 1332 - 1339
  • [39] Deriving generalized variational principles in general mechanics by using Lagrangian multiplier method
    Liang, LF
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1999, 42 (12): : 1332 - 1339
  • [40] Exact Solutions of Five Complex Nonlinear Schrodinger Equations by Semi-Inverse Variational Principle
    Najafi, Mohammad
    Arbabi, Somayeh
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2014, 62 (03) : 301 - 307