Shifted primes without large prime factors

被引:0
|
作者
Baker, RC [1 ]
Harman, G
机构
[1] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
[2] Cardiff Univ, Sch Math, Cardiff CF2 4AG, S Glam, Wales
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:331 / 361
页数:31
相关论文
共 50 条
  • [41] On Products of Shifted Primes
    P. Berrizbeitia
    P.D.T.A Elliott
    The Ramanujan Journal, 1998, 2 : 219 - 223
  • [42] On the divisors of shifted primes
    De Koninck, Jean-Marie
    Katai, Imre
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (02) : 998 - 1004
  • [43] Divisors of shifted primes
    Indlekofer, KH
    Timofeev, NM
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2002, 60 (3-4): : 307 - 345
  • [44] On products of shifted primes
    Berrizbeitia, P
    Elliott, PDTA
    RAMANUJAN JOURNAL, 1998, 2 (1-2): : 219 - 223
  • [45] On prime factors of integers which are sums or shifted products
    Stewart, Cameron L.
    ANATOMY OF INTEGERS, 2008, 46 : 275 - 287
  • [46] Integers without large prime factors in short intervals and arithmetic progressions
    Harman, G
    ACTA ARITHMETICA, 1999, 91 (03) : 279 - 289
  • [47] AN ERDOS-KAC THEOREM FOR INTEGERS WITHOUT LARGE PRIME FACTORS
    ALLADI, K
    ACTA ARITHMETICA, 1987, 49 (01) : 81 - 105
  • [48] INTEGERS, WITHOUT LARGE PRIME FACTORS, IN ARITHMETIC PROGRESSIONS .2.
    GRANVILLE, A
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1993, 345 (1676): : 349 - 362
  • [49] Integers without large prime factors in short intervals: Conditional results
    Goutam Pal
    Satadal Ganguly
    Proceedings - Mathematical Sciences, 2010, 120 : 515 - 524
  • [50] Statistical distribution of integers without large prime factors in arithmetic progressions
    Fouvry, E
    Tenenbaum, G
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1996, 72 : 481 - 514