Conservation laws in coupled cluster dynamics at finite temperature

被引:8
|
作者
Peng, Ruojing [1 ]
White, Alec F. [1 ]
Zhai, Huanchen [1 ]
Kin-Lic Chan, Garnet [1 ]
机构
[1] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2021年 / 155卷 / 04期
基金
美国国家科学基金会;
关键词
GRAND PARTITION-FUNCTION; MANY-BODY SYSTEMS; NUCLEAR-DYNAMICS; APPROXIMATION; EXPANSIONS;
D O I
10.1063/5.0059257
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We extend the finite-temperature Keldysh non-equilibrium coupled cluster theory (Keldysh-CC) [A. F. White and G. K.-L. Chan, J. Chem. Theory Comput. 15, 6137-6253 (2019)] to include a time-dependent orbital basis. When chosen to minimize the action, such a basis restores local and global conservation laws (Ehrenfest's theorem) for all one-particle properties while remaining energy conserving for time-independent Hamiltonians. We present the time-dependent Keldysh orbital-optimized coupled cluster doubles method in analogy with the formalism for zero-temperature dynamics, extended to finite temperatures through the time-dependent action on the Keldysh contour. To demonstrate the conservation property and understand the numerical performance of the method, we apply it to several problems of non-equilibrium finite-temperature dynamics: a 1D Hubbard model with a time-dependent Peierls phase, laser driving of molecular H-2, driven dynamics in warm-dense silicon, and transport in the single impurity Anderson model. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:15
相关论文
共 50 条