Conservation laws in coupled cluster dynamics at finite temperature

被引:8
|
作者
Peng, Ruojing [1 ]
White, Alec F. [1 ]
Zhai, Huanchen [1 ]
Kin-Lic Chan, Garnet [1 ]
机构
[1] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2021年 / 155卷 / 04期
基金
美国国家科学基金会;
关键词
GRAND PARTITION-FUNCTION; MANY-BODY SYSTEMS; NUCLEAR-DYNAMICS; APPROXIMATION; EXPANSIONS;
D O I
10.1063/5.0059257
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We extend the finite-temperature Keldysh non-equilibrium coupled cluster theory (Keldysh-CC) [A. F. White and G. K.-L. Chan, J. Chem. Theory Comput. 15, 6137-6253 (2019)] to include a time-dependent orbital basis. When chosen to minimize the action, such a basis restores local and global conservation laws (Ehrenfest's theorem) for all one-particle properties while remaining energy conserving for time-independent Hamiltonians. We present the time-dependent Keldysh orbital-optimized coupled cluster doubles method in analogy with the formalism for zero-temperature dynamics, extended to finite temperatures through the time-dependent action on the Keldysh contour. To demonstrate the conservation property and understand the numerical performance of the method, we apply it to several problems of non-equilibrium finite-temperature dynamics: a 1D Hubbard model with a time-dependent Peierls phase, laser driving of molecular H-2, driven dynamics in warm-dense silicon, and transport in the single impurity Anderson model. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Conservation laws for interacting magnetic nanoparticles at finite temperature
    Durhuus, Frederik L.
    Beleggia, Marco
    Frandsen, Cathrine
    PHYSICAL REVIEW B, 2024, 109 (05)
  • [2] Thermofield Theory for Finite-Temperature Coupled Cluster
    Harsha, Gaurav
    Henderson, Thomas M.
    Scuseria, Gustavo E.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (11) : 6127 - 6136
  • [3] Finite Temperature Coupled Cluster Theories for Extended Systems
    Hummel, Felix
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2018, 14 (12) : 6505 - 6514
  • [4] Finite surface discretization for incompressible Navier-Stokes equations and coupled conservation laws
    Hokpunna, Arpiruk
    Misaka, Takashi
    Obayashi, Shigeru
    Wongwises, Somchai
    Manhart, Michael
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 423
  • [5] CONSERVATION LAWS FOR COUPLED WAVE EQUATIONS
    Masemola, P.
    Kara, A. H.
    Bhrawy, A. H.
    Biswas, A.
    ROMANIAN JOURNAL OF PHYSICS, 2016, 61 (3-4): : 367 - 377
  • [6] Conservation laws for relativistic fluid dynamics
    Arch Ration Mech Anal, 4 (377):
  • [7] CONSERVATION-LAWS IN THE DYNAMICS OF RODS
    MADDOCKS, JH
    DICHMANN, DJ
    JOURNAL OF ELASTICITY, 1994, 34 (01) : 83 - 96
  • [8] Conservation laws for relativistic fluid dynamics
    Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong
    Arch Ration Mech Anal, 4 (377-398):
  • [9] Conservation laws for relativistic fluid dynamics
    Chen, J
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 139 (04) : 377 - 398
  • [10] Truncated Wigner dynamics and conservation laws
    Drummond, Peter D.
    Opanchuk, Bogdan
    PHYSICAL REVIEW A, 2017, 96 (04)