Electrostatic Dust-Acoustic Rogue Waves in an Electron Depleted Dusty Plasma

被引:7
|
作者
Sikta, Jebun Naher [1 ,2 ]
Chowdhury, Nure Alam [3 ]
Mannan, Abdul [2 ]
Sultana, Sharmin [2 ]
Mamun, A. A. [2 ]
机构
[1] Daffodil Int Univ, Fac Sci & Informat Technol, Dhaka 1207, Bangladesh
[2] Jahangirnagar Univ, Dept Phys, Dhaka 1342, Bangladesh
[3] Atom Energy Ctr, Plasma Phys Div, Dhaka 1000, Bangladesh
关键词
dust-acoustic waves; NLSE; rogue waves; electron depleted plasma; CHARGED DUST; DOUBLE-LAYERS; PARTICLES; POWDERS;
D O I
10.3390/plasma4020015
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The formation of gigantic dust-acoustic (DA) rouge waves (DARWs) in an electron depleted unmagnetized opposite polarity dusty plasma system is theoretically predicted. The nonlinear Schrodinger equation (NLSE) is derived by employing the reductive perturbation method. It is found that the NLSE leads to the modulational instability (MI) of DA waves (DAWs), and to the formation of DARWs, which are caused by to the effects of nonlinearity and dispersion in the propagation of DAWs. The conditions for the MI of DAWs and the basic properties of the generated DARWs are numerically identified. It is also seen that the striking features (viz., instability criteria, amplitude and width of DARWs, etc.) of the DAWs are significantly modified by the effects of super-thermality of ions, number density, mass and charge state of the plasma species, etc. The results obtained from the present investigation will be useful in understanding the MI criteria of DAWs and associated DARWs in electron depleted unmagnetized opposite polarity dusty plasma systems like Earth's mesosphere (where the D-region plasma could suffer from electron density depletion), cometary tails, Jupiter's magnetosphere, and F-ring of Saturn, etc.
引用
收藏
页码:230 / 238
页数:9
相关论文
共 50 条
  • [31] Dust–Acoustic Envelope Solitons and Rogue Waves in a Magnetized Electron-Depleted Plasma
    D. V. Douanla
    C. G. L. Alim
    A. Tiofack
    Plasma Physics Reports, 2021, 47 : 384 - 395
  • [32] Three dimensional dust-acoustic solitary waves in an electron depleted dusty plasma with two-superthermal ion-temperature
    Borhanian, J.
    Shahmansouri, M.
    PHYSICS OF PLASMAS, 2013, 20 (01)
  • [33] Self-excited dust-acoustic waves in an electron-depleted nanodusty plasma
    Tadsen, Benjamin
    Greiner, Franko
    Groth, Sebastian
    Piel, Alexander
    PHYSICS OF PLASMAS, 2015, 22 (11)
  • [34] Dust-acoustic soliton in a dusty plasma
    Ma, JX
    Liu, JY
    PHYSICS OF PLASMAS, 1997, 4 (02) : 253 - 255
  • [35] Dust-Acoustic Solitary Waves in Magnetized Dusty Plasma with Dust Opposite Polarity
    El-Wakil, S. A.
    Attia, M. T.
    El-Shewy, E. K.
    Zaghbeer, S. K.
    Abdelwahed, H. G.
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2011, 6 (01): : 211 - 222
  • [36] Dust-Acoustic Shock Waves in a Dusty Plasma With Charge Fluctuating Positive Dust
    Paul, Sanjit K.
    Mandal, Gurudas
    Mamun, A. A.
    Amin, M. R.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2009, 37 (04) : 627 - 631
  • [37] Dust-acoustic modulated structures in self-gravitating magnetized electron depleted dusty plasmas: multi-rogue waves and dark soliton collisions
    Tiofack, C. G. L.
    Douanla, D., V
    Alim
    Mohamadou, A.
    Ismaeel, Shreif M. E.
    El-Tantawy, S. A.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (06):
  • [38] Dust-acoustic modulated structures in self-gravitating magnetized electron depleted dusty plasmas: multi-rogue waves and dark soliton collisions
    C. G. L. Tiofack
    D. V. Douanla
    A. Alim
    Shreif. M. E. Mohamadou
    S. A. Ismaeel
    The European Physical Journal Plus, 136
  • [39] Dissipative dust acoustic solitary waves in an electron depleted dusty plasma with superthermal ions
    Shahmansouri, M.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2013, 37 (A3): : 285 - 291
  • [40] Dust-Acoustic Envelope Solitons in an Electron-Depleted Plasma
    Akter, J.
    Chowdhury, N. A.
    Mannan, A.
    Mamun, A. A.
    PLASMA PHYSICS REPORTS, 2021, 47 (07) : 725 - 731