Simple or Complex? Together for a More Accurate Just-In-Time Defect Predictor

被引:4
|
作者
Zhou, Xin [1 ]
Han, DongGyun [1 ]
Lo, David [1 ]
机构
[1] Singapore Management Univ, Sch Comp & Informat Syst, Singapore, Singapore
基金
新加坡国家研究基金会;
关键词
FUSION METHODS; BUGS;
D O I
10.1145/3524610.3527910
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Just-In-Time ( JIT) defect prediction aims to automatically predict whether a commit is defective or not, and has been widely studied in recent years. In general, most studies can be classified into two categories: 1) simple models using traditional machine learning classifiers with hand-crafted features, and 2) complex models using deep learning techniques to automatically extract features. Hand-crafted features used by simple models are based on expert knowledge but may not fully represent the semantic meaning of the commits. On the other hand, deep learning-based features used by complex models represent the semantic meaning of commits but may not reflect useful expert knowledge. Simple models and complex models seem complementary to each other to some extent. To utilize the advantages of both simple and complex models, we propose a combined model namely SimCom by fusing the prediction scores of one simple and one complex model. The experimental results show that our approach can significantly outperform the state-of-the-art by 6.0-18.1%. In addition, our experimental results confirm that the simple model and complex model are complementary to each other.
引用
下载
收藏
页码:229 / 240
页数:12
相关论文
共 50 条
  • [21] Exploring Simple Architecture of Just-in-Time Compilation in Databases
    Ning, Haoran
    Han, Bocheng
    Yang, Zhengyi
    Hao, Kongzhang
    Ma, Miao
    Wang, Chunling
    Liu, Boge
    Chen, Xiaoshuang
    Hao, Yu
    Jin, Yi
    Zhang, Wanchuan
    Zhang, Chengwei
    WEB AND BIG DATA, APWEB-WAIM 2024, PT V, 2024, 14965 : 504 - 514
  • [22] A Replication Study: Just-In-Time Defect Prediction with Ensemble Learning
    Young, Steven
    Abdou, Tamer
    Bener, Ayse
    2018 IEEE/ACM 6TH INTERNATIONAL WORKSHOP ON REALIZING ARTIFICIAL INTELLIGENCE SYNERGIES IN SOFTWARE ENGINEERING (RAISE), 2018, : 42 - 47
  • [23] The Impact of Mislabeled Changes by SZZ on Just-in-Time Defect Prediction
    Fan, Yuanrui
    Xia, Xin
    da Costa, Daniel Alencar
    Lo, David
    Hassan, Ahmed E.
    Li, Shanping
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2021, 47 (08) : 1559 - 1586
  • [24] Feature Sets in Just-in-Time Defect Prediction: An Empirical Evaluation
    Bludau, Peter
    Pretschner, Alexander
    PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON PREDICTIVE MODELS AND DATA ANALYTICS IN SOFTWARE ENGINEERING, PROMISE 2022, 2022, : 22 - 31
  • [25] Towards Reliable Online Just-in-Time Software Defect Prediction
    Cabral, George G.
    Minku, Leandro L.
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2023, 49 (03) : 1342 - 1358
  • [26] Interpretability application of the Just-in-Time software defect prediction model
    Zheng, Wei
    Shen, Tianren
    Chen, Xiang
    Deng, Peiran
    JOURNAL OF SYSTEMS AND SOFTWARE, 2022, 188
  • [27] Temporal Convolutional Networks for Just-in-Time Software Defect Prediction
    Ardimento, Pasquale
    Aversano, Lerina
    Bernardi, Mario
    Cimitile, Marta
    ICSOFT: PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON SOFTWARE TECHNOLOGIES, 2020, : 384 - 393
  • [28] Deep Just-in-Time Defect Prediction: How Far Are We?
    Zeng, Zhengran
    Zhang, Yuqun
    Zhang, Haotian
    Zhang, Lingming
    ISSTA '21: PROCEEDINGS OF THE 30TH ACM SIGSOFT INTERNATIONAL SYMPOSIUM ON SOFTWARE TESTING AND ANALYSIS, 2021, : 427 - 438
  • [29] Just-in-time defect prediction based on AST change embedding
    Zhuang, Weiyuan
    Wang, Hao
    Zhang, Xiaofang
    KNOWLEDGE-BASED SYSTEMS, 2022, 248
  • [30] CfExplainer: Explainable just-in-time defect prediction based on counterfactuals
    Yang, Fengyu
    Zeng, Guangdong
    Zhong, Fa
    Xiao, Peng
    Zheng, Wei
    Qiu, Fuxing
    JOURNAL OF SYSTEMS AND SOFTWARE, 2024, 218